\1cw Verze 2.10 \pTM 0 \pBM 4 \pPL 124 \pLM 1 \pRM 65 \HD \+ \+ \, \- \= \HE \+ \+ \, \- \= \FD \+ \+ \@\, \- \= \FE \+ \+ \, \- \= \+ \+ \"1 0. C O M B I N A T O R I C S O F N A T U R A L \, \-\1 \+ \+ \" V E C T O R S \, \-\1 \+ \+ \410.1 The polynomial coefficient\, \-\1 \+ \+ A partition of the number m into n parts is an n-dimensional \-\2\/ \+\1 \+ vector \ \4m \1which elements \ are \ ordered \ in the \ decreasing order, \-\2 \+\1 \+ m \9> \1m . From this \ vector all other vectors on \ the given orbit \-\2\ j \ j+1 \+\1 \+ can be generated, if its elements are permuted by the unit permu-\A \- \+ \+ tation matrices \ acting on the \ partition vector from \ the right. \- \+ \+ These vectors correspond to the scalar products of naive matrices \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \4N \1with the \ unit vector rows \ \4J\1ö or to \ the quadratic forms \ \4N\1ö\4N\1, \- \+ \+\2\ \ \ \ \ \ \ \ \ T\ \ \ \ \ T\ T \1because \4J N \1= \4J N N\1. There are n! permutation matrices, but not so \-\/ \+ \+ many permuted vector columns, if \ some elements of the vector row \- \+ \+ are not distinguishable. Vectors having \ equal length m point to \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+ the sphere \ and if rotate,they \ remain on it. Therefore, \ they are \- \+ \+ undistinguishable at permutations. If all parts are equal, then a-\A \-\/ \+ \+ ll permutations have no effect on the partition vector.\, \- \+ \+ We divide vector \ elements into two groups, in \ one all zero \-\2\ \ \ \ \/ \+\1 \+ elements) will be , it is n elements, and in other group all re-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \+\1 \+ maining elements (n-n ). The number of possible permutations will \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \+\1 \+\0 \1be \ reduced from \ the factorial \ n! on \ the binomial \ coefficient \-\0\/ \+\1 \+\0( \1n \0) \1 , or n!/n\ !(n-n )!. In the next step \ we single out vectors \-\09 \1n\20\00\ \ \ \ \ \ \ \ \ \20\ \ \ \ \ 0\/ \+\1 \+\0 \1with the length 1, their number \ is n , all other vectors will be \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \+\1 \+\0 \1counted by the term \ (n-n -n ), and corresponding permutations by \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\ \ 1 \+\1 \+\0 \1the \ binomial coefficient \ (n-n )!/n !(n-n -n )!. So \ we proceed, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\ \ \ \ 1\ \ \ \ \ 0\ \ 1 \+\1 \+\0 \1till all possible values of m will be exhausted. If some n = 0, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+\0 \1then conveniently 0! = 1 and the corresponding term is ineffecti-\A \-\2\/ \+\1 \+\0 \1ve. At the end, we obtain a product of binomial coefficients:\, \-\2 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m-1 \1n! (n-n\ )! (n-n\ -n\ )! (n-\7S\ \ \ \1n\ )!\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ 0\ \ \ \ \ \ \ \ \ \ \ \ \ 0\ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k=0\ k \+\8---------\ \ -------------\ ----------------\ \1..\8----------- \+\1 n\ !(n-n\ )!\ n\ !(n-n\ -n\ )! n\ !(n-n\ -n\ -n\ )!\ \ n\ !0!\, \-\2\ 0\ \ \ \ \ 0\ \ \ \ 1\ \ \ \ \ 0\ \ 1\ \ \ \ 2\ \ \ \ \ 0\ \ 1\ \ 2\ \ \ \ \ m \+\1 \+ Equal factorials \ appear consecutively as \ dividends and divi-\A \- \+ \+ sors. When they cancel, there remains the polynomial coefficient \, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n!/\7P\ \ \ \1n\ ! (10.1)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\9>\20\ k \+\1 \+ We will call it the polynomial coefficient for n permutations, \-\/ \+ \+ because it is obtained by \ permuting n columns. Later we will con-\A \-\/ \+ \+ struct another polynomial coefficient for permutations of rows of \-\/ \+ \+ naive matrices.\, \- \+ \+ We limited the index k by the lower limit 0. Actually,the coef-\A \-\2\/ \+\1 \+ ficient could be used also for vectors with negative elements, n \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+ are always positive numbers, but we \ count by the polynomial coef-\A \- \+ \+ ficient (10.1) points on the partition orbits of the positive co-\A \-\/ \+ \+ ne of the n dimensional space.\, \- \+ \+ Please, note the importance of this step. We know the vector \-\/ \+ \+ \4m \1exactly, but we replace it \ by the corresponding partition. All \- \+ \+ points on \ the given orbit \ are considered to \ be \4equivalent\1. The \- \+ \+ replacing the vector \4m \1by the partition is a logical abstraction. \- \+ \+ We can proceed further, the \ partition is compared with an analy-\A \- \+ \+ tical function and the orbit \ is described by a density distribu-\A \-\/ \+ \+ tion.\, \- \+ \+ \410.2 Simplex sums of polynomial coefficients\, \-\1 \+ \+ Now it is \ possible to apply again partition \ schemes and to \-\/ \+ \+ study sums of polynomial coefficients on all orbits of plane sim-\A \- \+ \+ plices, it means all \ natural n-dimensional vectors with constant \-\/ \+ \+ sums m.\, \- \+ \+ The overall sum is known \ in combinatorics as the distribution \- \+ \+ of m \ undistinguishable things into n \ boxes. It is counted \ by a \- \+ \+ binomial coefficient\, \- \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1m+n-1\0)\ \ (\1m+n-1\0) \7\ \ \ \ \ \ \ \ \ \ \ S\ \ \ \1n!/\7P\1n\ ! = \ \ \ \ \ \ = \ \ \ \ \ \ \ (10.2)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ k\9>\20\ \ \ \ \ k\ \ \ \ \09 \1m \00\ \ 9 \1n-1 \00 \+\1 \+ Both binomial \ coefficients are only different \ forms of one \-\/ \+ \+ coefficient. Most \ easily this binomial \ coefficient is obtained, \- \+ \+ if we follow \ all possibilities, how to divide \ m things in a row \- \+ \+ by (n-1) bars representing dividing walls of compartments. We ha-\A \- \+ \+ ve (m+n-1) objects of two kinds and the result is simply given by \- \+ \+ a binomial coefficient. \ Who is not satisfied \ with this explana-\A \- \+ \+ tion, can prove (10.2) by the full induction. We tried it at sim-\A \- \+ \+ ple cases and it functioned well. Thus we suppose that it is true \- \+ \+ for all n dimensional vectors with \ (m-1) elements and to all (n- \- \+ \+ 1) dimensional vectors with m elements. \ We use them for counting \- \+ \+ points with sums m in n-dimensions. These we divide into two dis-\A \- \+ \+\0 \1tinct sets. In one all points \ having the last element 0 will be. \-\0 \+\1 \+\0 \1Clearly, they all are in \ (n-1)-dimensional subspace and they are \-\0 \+\1 \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1m+n-2\0) \1counted by the binomial coefficient \ .. In the second sub-\A \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \1m \00 \+\1 \+\0 \1set vectors having the last \ element at least 1 are counted. They \- \+ \+\0 \1are obtained from partitions of (m-1) things into exactly n parts \- \+ \+\0 \1by adding \ 1 to the first \ element.This addition does \ not change \- \+ \+\0 \1the corresponding number of points. The result is formed by a sum \-\/ \+ \+ of 2 binomial coefficients\, \-\8 \+\1 \+ (m+n-2)!\ \ \ \ (m+n-2)! \ \ (m+n-2)![(n-1)+m]\ \ \ \0(m\1m+n-1\0)\, \-\8--------\ \1+\ \8-------------\ \1= \8------------------\ \1=\ \ \ \ \ \ \ \ \ \ (10.3) \+m!(n-2)! (m-1)!(n-1)! m!(n-1)! \ \ \09 \1m \00 \+\1 \, \- \+ \+ We have told that we will not be interested in vectors with nega-\A \-\/ \+ \+ tive values, but it is \ instructive to show results according the \-\/ \+ \+ lover limit of \ the value r which appears \ as the parameter (1-r) \- \+ \+ at \ n \ in \ the \ binomial \ coefficients. \ It \ can be considered as \- \+ \+ differentiating of the simplex\, \- \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Lower limit \ -1 0 1 2\, \-\8-----------------------k----------------------------------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \0(\1m+2n-1\0) (\1m+n-1\0) (\1m-1\0) (\1m-n-1\0) \1Points on the simplex\ \ \8p\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \09 \1n-1 \00 9 \1n-1 \00 9\1n-1\00 9 \1n-1 \00 \+\1 \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1m+3-1\0) \1 The binomial coefficients are \ known as triangle num-\A \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \1m \00\/ \+\1 \+\0 \1bers. They count points of 3 dimensional planes, triangles.\, \- \+ \+ \410.3 Differences of normalized simplices\, \-\1 \+ \+ We have counted points of the plane simplices directly, now we \-\/ \+ \+ apply partition schemes and insert into them polynomial coeffici-\A \- \+ \+ ents, similarly as cycle indices \ in Chapter 8. We limit ourselves \-\/ \+ \+ on cases when m=n. As an example, we give the scheme for m=n=6:\, \- \+ \+\8\ \ \ \ \ p \1n \8p \11 2 3 4 5 6\, \- \+\8-----k----------------------------- \+\ \ \ \ \ p \1m=6 \8p \16\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 5 \8p \130\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 4 \8p \130 60\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 3 \8p \115 120 60\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 2 \8p \120 90 30\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 1 \ 1\, \-\8-----k----------------------------- \+\ \ \ \ \ p \+\ \ \ \ \ p \1Sums \8p \16 75 200 150 30 1\, \- \+ \+ In the \ first column are \ counted vertices of \ the simplex, in \-\/ \+ \+ the second column points on \ 2-dimensional edges, in the 3. column \- \+ \+ points of \ its 3-dimensional sides \ and only the \ last point lies \- \+ \+ inside of \ the 6 dimensional plane, \ all other points \ are on its \- \+ \+ borders. This is \ a rather surprising property of \ the high dimen-\A \- \+ \+ sional spaces. But we \ can not forget, that usually \ m>>n and then \-\/ \+ \+ there are more points inside than on the border.\, \- \+ \+ Column sums \ of consecutive normalized plane \ simplices can be \- \+ \+ arranged \ into Table \ 10.1, which \ rows are \ known as \ the Van der \- \+ \+ Monde identity:\, \- \+ \+ \4Table 10.1 Van der Monde identity\, \-\1 \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \4n \8p \41 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k-----------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \12 1 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \13 6 1 \8p \110 \, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \14 18 12 1 \8p \135\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \15 40 60 20 1 \8p \1126\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \16 75 200 150 30 1 \8p \1462\, \- \+ \+ The \ elements in \ each \ row \ can \ be written \ as products \ of \, \- \+ \+ 2 binomial coefficients, e. g. \ 75 = (6!/4!2!)*(5!/4!1!). We have \- \+ \+ a special case of the identity\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ m-k\0( \1m \0)( \1m-k\0)\ \ \ \ (\1m+k\0) \7\ \ \ \ \ \ \ \ \ \ \ \ S\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \1=\ \ \ \ \ \ \ (10.4)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ i=0\09\1k+i\009 \1i \00\ \ \ \ 9\ \1m\ \00 \+\1 \+ The sum of products of 2 \ binomial coefficients can be written as \- \+ \+ a formal power of a binomial\, \- \+ \+\0\ \ \ \ \ \ \ \ \ &( \1m \0)\ \ \ \ \ *\1n\ \ \ \0(m\1m+n \0) \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + 1\ \ \ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10.4)\, \-\0\ \ \ \ \ \ \ \ \ 79 \1i \00\ \ \ \ \ 8\ \ \ \ 9 \1m \00 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n/2\0(\1n\0)\12 \0(\12n\0) \1Its special case is the Waltis identity for m=n: \7S\ \ \ \ \ \ \ \ \1=\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i=0\09\1i\00 9 \1n\00 \+\1 \+ We interpret it as the simplex \ in which the first vector is roo-\A \-\/ \+ \+ ted and only (n-1) other vectors are permuted. For example:\, \- \+ \+\8\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \1Orbits \ 4000 \ 3100 1300 2200 \ 2110 1210 \ 1111\ \7S\, \-\8-------k------k--------------------k-------------k-----k---- \+\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \1Points \8p \11 \8p \13 3 3 \8p \13 6 \8p \11\ \ \8p \120\, \-\8\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ p\ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \1Counts \8p \11 \8p \19 \8p \19 \8p \11 \8p \120\, \- \+ \+ \410.4 Difference according to unit elements\, \-\1 \+ \+ When we \ arrange the partition scheme \ according to the number \-\/ \+ \+ of unit \ vectors n , we obtain a\ difference of the \ plane simplex.\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \+\1 \+ E.g. for m=n=5 \, \-\2 \+\1 \+\8\ \ \ \ p \1n \8p \10 1 2 3 4 5\, \-\2\ 1 \+\8----k------------------------ \+\ \ \ \ p \1m=5 \8p \15\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 4 \8p \120 \, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 3 \8p \120 30\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 2 \8p \130 20\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 1 \8p \11\, \- \+\8----k----------------------- \+\ \ \ \ p \7 S \8p \125 50 30 20 0 1 \- \+ \+ The resulting column sums of polynomial coefficients are ta-\A \-\/ \+ \+ bulated in Table 10.2:\, \- \+ \+ \4Table 10.2 Unit elements difference\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \8p \10 1 2 3 4 5 6 \8p \7S\, \-\2\ 1 \+\8----k---------------------------------k--- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=0 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \10 1 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \12 0 1 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \13 6 0 1 \8p \110\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p\110 12 12 0 1 \8p \135\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p\125 50 30 20 0 1 \8p\1126\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p\171 150 150 60 30 0 1 \8p\1462 \, \- \+ \+ The numbers \ b are formed by vectors \ without any unit \ ele-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i0 \/ \+\1 \+ ments. They can be called \ subplane numbers, because they generate \- \+ \+ the number of \ points of the normal plane \ simplex by multiplying \- \+ \+ with binomial coefficients:\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m\ \ \ \0(\1m+n-1\0) \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b\ + 1)\ = \ \ \ \ \ \ \ (10.5)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \09 \1m \00 \+\1 \+ They are (n-k) dimensional vectors without unit elements but \-\/ \+ \+ with zero elements. Their (n-k) elements are combined with k unit \- \+ \+ elements. When \ m \9$ \1n, such relations \ are more complicated. Cor-\A \- \+ \+ responding subplane numbers are \ obtained by corresponding calcu-\A \- \+ \+ lations for partitions without units. \ The beginning of the table \-\/ \+ \+ is\, \- \+\8\ \ \ \ p \+\ \ \ \ p \1n \8p \10 1 2 3 4 5 6\, \- \+\8----k--------------------------- \+\ \ \ \ p \1m=0 \8p \11 1 1 1 1 1 1\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 1 \8p \10 0 0 0 0 0 0\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 2 \8p \10 1 2 3 4 5 6\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 3 \8p \10 1 2 3 4 5 6\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 4 \8p \10 1 3 6 10 15 21\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 5 \8p \10 1 4 9 16 25 36\, \-\8\ \ \ \ p \+\ \ \ \ p \+\ \ \ \ p \1 6 \8p \10 1 5 13 26 45 71\, \- \+ \+ Its values b(i,j) for small m are:\, \-\2 \+\1 \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1n\0)\ (\1n\0) \1b(0,n) = 1; B(1,n) = 0; b(2,n) = ; b(3,n) = ; \, \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9\11\00\ 9\11\00 \+\1 \+\0 (\1n\0)(\1n\0) (\1n+1\0) (\1n\0) (\1n\0) \22 \1b(4,n) = = ; b(5,n) = + 2 = n ; \, \-\0 9\11\009\12\00 9 \12 \00 9\11\00 9\12\00 \+\1 \+\0 (\1n\0) (\1n\0)\ \ (\1n\0) \1b(6,n) = + 3 +\ \ \ \ .\, \-\0 9\11\00 9\12\00 \ 9\13\00 \+\1 \+ The subplane numbers appear here on the diagonal. An example \- \+ \+ of their application for m = 4, n = 6:\, \- \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\19\0) \121 + 6*5 + \ 15*4 + 20*0 + 15*1 = 126 \ = ööö. Vectors without unit \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9\14\00 \+\1 \+ elements are combined with unit vectors.\, \- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \+ \410.5 Differences according to one element\, \-\1 \+ \+ In partition schemes the points are counted in spherical or-\A \-\/ \+ \+ bits. We can differentiate the plane according to only one speci-\A \-\/ \+ \+ fic vector x. It can be shown on the 2-dimensional complex:\, \- \+ \+\8\ \ \ \ \ \ \ \ p \1m\ \8p \10 1 2 3 4 5\, \-\2\ a \+\8--------k----------------------- \+\ \ \ \ \ \ \ \ p \1Points \8p \ \1* * * * * *\, \-\8\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p p \1* * * * *\, \-\8\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p p \1* * * *\, \-\8\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p p \1* * *\, \-\8\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p p \1* *\, \-\8\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p p \1*\, \- \+\8--------k----------------------- \+\ \ \ \ \ \ \ \ p \1Number \8p \11 2 3 4 5 6\, \- \+ \+ 2-dimensional \ complex forms \ a 3-dimensional \ simplex and its \- \+ \+ points for different values of the vector a are counted by column \- \+ \+ sums. It is similar, as when \ points of the (n-1) dimensional com-\A \-\/ \+ \+ plex are counted for different values \ of m, m going from 0 till \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+\0 \1m. \ \ These \ \ points \ \ are \ \ counted \ \ by \ \ binomial \ coefficients \-\0\/ \+\1 \+\0(\1n+k-2\0) \1 . For example, n=7, m=7: \, \-\09 \1k \00 \+\1 \+ m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\1\ k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 1 2 3 4 5 6 7 \+\8---------------------k---------------------------------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Binomial \ coefficient\8p\ \1792\ \ 462 \ 252\ \ 123\ \ \ 56\ \ \ 21\ \ \ \ 6\ \ \ \ 1\, \- \+ \+\0 \1 We obtain the identity\, \-\0 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m\ \0(\1n+k-2\0)\ \ \ (\1n+m-1\0) \7\ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ \ \ \ \ \ \ \ \ \ \1= \ \ \ \ \ \ \ (10.6)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k=0\09 \1k \00\ \ \ 9 \1m \00 \+\1 \+ Now, we introduce another difference.\, \- \+ \+ \410.6 Difference \7D\1(n) \4of plane simplices\, \-\1 \+ \+ Till now, \ zero elements were permuted \ with other elements. \-\/ \+ \+ We exclude them \ and we will count only \ existing vectors and not \- \+ \+ virtual ones. \ It means that we \ will count k-dimensional vectors \- \+ \+ with constant sums m. If \ we draw a tetrahedron, then the counted \- \+ \+ set of points \ is formed by one vertex, one \ edge without the se-\A \- \+ \+ cond vertex, the \ inside of one side and \ by the four dimensional \- \+ \+ core. In \ combinatorics these vectors are \ known as compositions. \-\/ \+ \+ There can be arranged onto partition schemes. For m=5 we get:\, \- \+\8\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \1n\8p \11\8p \12 \8p \13 \8p \14 \8p \15 \8p \7S\, \-\1 \+\8-k--k-------k---------------k----------------------k--------k---- \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p p \15\8p p p p p \11\, \-\8\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p p p \141,14 \8p p p p \12\, \-\8\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p p p \132,23 \8p \1311,131,113, \8p p p \15\, \-\8\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p p p p \1221,212,122; \8p \12111,1211,1121,1112 \8p p \17\, \-\8\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p p p p p p\111111 \8p \11\, \- \+\8-k--k-------k---------------k----------------------k--------k--- \+\ p\ \ p\ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ p \7S\8p \11\8p \14 \8p \16 \8p \14 \8p \11 \8p\116\, \-\8\ p\ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+ For normal simplices we obtain Table 10.3\, \- \+ \+ \4Table 10.3 Binomial coefficients (matrix B)\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1k \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k-----------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 2 1 \8p \14\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 3 3 1 \8p \18\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 4 6 4 1 \8p \116\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \11 5 10 10 5 1 \8p \132\, \- \+ \+ The table \ has one fault, \ both indices must \ be decreased by \- \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1k-1\0) \1one, to \ obtain \ the \ true \ binomial \ coefficient \ ööööö. \ We had \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9\1m-1\00 \+\1 \+\0 \1difficulties with \ the binomial coefficient \ even before, when it \-\0 \+\1 \+\0\ \ \ \ \ \ \ \ \ \ \ \ (\1m+n-1\0) \1appeared as \ \ \ \ \ \ \ . In this case, it is the Table 10.4:\, \-\0\ \ \ \ \ \ \ \ \ \ \ \ 9 \1m \00 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \4Table 10.4 Matrix B\ B of binomial coefficients\, \-\1 \+ \+\8\ \ \ \ \ p \1n \ 1 2 3 4 5 6\, \-\8-----k---------------------------- \+\ \ \ \ \ p \+\ \ \ \ \ p \1m=0 \8p \11 1 1 1 1 1\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 1 \8p \11 2 3 4 5 6\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 2 \8p \11 3 6 10 15 21\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 3 \8p \11 4 10 20 35 56\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 4 \8p \11 5 15 35 70 126\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 5 \8p \11 6 21 56 126 252\, \- \+ \+ In \ both preceding \ tables of \ binomial coefficients, \ their \-\/ \+ \+ elements were obtained similarly, as \ a sum of two neighbors, the \- \+ \+ left one \ and the upper \ one, except that \ in the Table \ 10.4 the \-\/ \+ \+ left element is added only if j \9< \1i.\, \- \+ \+ Recall \ transactions, \ we \ made \ with \ partitions \ and their \-\/ \+ \+ counts according the lower allowed \ limit of parts. Here, we have \- \+ \+ a similar shift of values of Tables 10.3 and 10.4, but the opera-\A \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1tion is made by the matrix of binomial coefficients \4B \1. We permu-\A \- \+ \+ te k nonzero elements with (n-k) zero elements and from a part of \- \+ \+ the \ plane simplex \ we obtain \ the whole \ simplex. Therefore this \- \+ \+ part is its difference \7D\1. \ Because there are more differences, it \- \+ \+ is the \ difference according to the \ number of vectors n. \ Now we \-\/ \+ \+ can return to Table 10.3. Its elements have the reccurence\, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ \ \ b\ \ = 1; b\ \ = b + b\ \ \ \ \ (10.7)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ 11\ \ \ \ \ \ \ ij\ \ \ \ i,j-1\ \ \ \ \ i-1,j \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m \1 They are generated by the binomial (1 + 1) = 2 . We alrea-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i\/ \+\1 \+ dy formulated the reccurence formula of the Table 10.4 in (10.3). \-\2 \+\1 \+ Notice that elements \ of the Table 10.4 are \ sums of all elements \-\2 \+\1 \+ of its preceding \ row or column, which is \ the consequence of the \-\2\/ \+\1 \+ consecutive applications of (10.3).\, \-\2 \+\1 \+ The inverse matrix to the matrix \4B \1is obtained from the for-\A \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m \1mal binomial (1 - 1) = 0. It \ is just the matrix \4B \1which elements \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ i\/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j\1-\2i \1are multiplied by alternating signs (-1) .\, \- \+ \+ \410.7 Difference \7D\1(m)\, \- \+ \+ When we arranged vector \ compositions in a table, we treated \-\/ \+ \+ till now \ only its column \ sums. There are \ also row sums, \ which \- \+ \+ count compositions classified according \ to their greatest vector \-\2 \+\1 \+ m . \ The consecutive \ results for \ n=m can \ be arranged into the \-\2\ k\/ \+\1 \+ table\, \- \+ \+ \4Table 10.5 Composition of vectors with m\ part\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\8\ \ \ \ \ p \+\ \ \ \ \ p \1n \8p\11 2 3 4 5 6\, \- \+\8-----k--------------------- \+\ \ \ \ \ p \1m\ =1 \8p\11 1 1 1 1 1\, \-\2\ k\ \ \ \8p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 2 \8p \11 2 4 7 12\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 3 \8p \11 2 5 11\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 4 \8p \11 2 5\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 5 \8p \11 2\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 6 \8p \11\, \- \+\8-----k---------------------- \+\ \ \ \ \ p \7S \8p\11 2 3 8 16 32\, \-\8\ \ \ \ \ p \+\1 \+ The \ elements of \ the Table \ 10.5 are \ related by a somewhat \-\/ \+ \+ complicated reccurence\, \- \+ \+ c(i,j) -2c(i,j-1) +c(i,j-i-1) = c(i-1,j-1) -2c(i-1,j-1) +c(i-i)\, \- \+ \+ with c(1,1) = \ 1 and c(0,x) = 0. It gives \ the uniform first row, \-\/ \+ \+ and the upper triangular form of the matrix. \, \- \+ \+ \410.7 The second difference - Fibonacci numbers\, \-\1 \+ \+ When we \ admit as the smallest \ element 2, we get \ the Table \-\/ \+ \+ 10.5 \ of points \ of truncated \ plane simplices. \ Its row sums are \- \+ \+ known as \ Fibonacci numbers. In \ a medieval arithmetic book \ they \- \+ \+ appeared as the answer on a number of rabbit pairs in consecutive \-\/ \+ \+ litters.\, \- \+ \+ \4Table 10.5 Fibonacci numbers\, \-\1 \+ \+\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \ 1 2 3 \ \7S\, \-\8-----k--------------k-- \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=2 \8p \11 \8p \11\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 \8p \11\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 1 \8p \12\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 2 \8p \13\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \11 3 1 \8p \15\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 7 \8p \11 4 3 \8p \18\, \- \+ \+ The vectors \ at m=7 are: \ 7; 52, 25, \ 43, 34; 322, \ 232, 223. \, \- \+ \+ Notice, that elements of the Table 10.5 are binomial coefficients \- \+ \+ shifted in each column for \ 2 rows. Fibonacci numbers F have the \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m \+\1 \+ reccurence F = F + F . The elements \ of the Table 10.5, f \-\2\ \ \ \ \ \ \ \ \ \ \ \ m m-1\ \ \ \ m-2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \/ \+\1 \+ are obtained by \ adding 2 to each vector with \ (j-1) nonzero ele-\A \-\2\/ \+\1\ \ \+ ments or 1 to the greatest element of the j dimensional vectors\, \-\2 \+\1 \+ \ \ \ \ \ \ \ \ \ \ \ \ \ f = 1; f\ \ = f + f (10.8)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ 21\ \ \ \ \ \ \ ij\ \ \ \ i-2,j-1 i-1,j \+\1 \+ In each row, all elements \ of both preceding rows are repea-\A \-\/ \+ \+ ted which gives the reccurence of Fibonacci numbers.\, \- \+ \+ Another \ way, how \ to obtain \ the Fibonacci \ numbers is \ the \-\/ \+ \+ count \ of the \ compositions, which \ all elements \ are odd. We get \-\/ \+ \+ a scarce Pascal triangle\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \ 1 2 3 4 5 6 \ \7S\, \-\8----k-------------------------k-- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \10 1 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 0 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \10 2 0 1 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 0 3 0 1\ \ \ \ \ \ \8p\ \15\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \10 3 0 4 0 1 \8p \18\, \- \+ \+ E. g. the last row: 51, 15, 33; 4*(3111); 111111.\, \- \+ \+ \410.9 Fibonacci spirals\, \-\1 \+ \+ If we draw on two orthogonal axes consecutive Fibonacci num-\A \-\/ \+ \+ bers, \ hypotenuses connecting \ following points \ of corresponding \-\2 \+\1 \+ right triangles are square roots of the squared Fibonacci numbers \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \/ \+\1 \+ F . This implies the identity\, \-\2\ 2k+1 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ 2 \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Fööööö=öFööööö+öFö (10.9) \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2k+1 k+1 k \+\1 \+\2 \1 A similar identity is obtained for \ even numbers as the dif-\A \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ 2 \1ference of \ two squared Fibonacci numbers \ e.g. F = F - F = 21 \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8 5 \ \ \ 3 \+\1 \+\2 \1= 25 - 4. This difference can be \ written as a sum of products of \-\2\/ \+\1 \+\2 \1Fibonacci numbers.\, \-\2 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 2\ \ \ \ \ \ 2 \1\ \ \ \ \ \ \ \ \ \ \ F = F - F \2= \1F + F F (10.10)\, \-\2\ \ \ \ \ \ \ \ \ \ \ 2k\ \ \ \ \ k+1 k-1\ \ \ \ k\ \ \ \ k k-1 \+\1 \+ We decompose high Fibonacci \ numbers consecutively and express \- \+ \+ coefficients by lower Fibonacci numbers as: \, \- \+ \+ F = F F + F F = F F + F F = till (10.9)\, \-\2 2k+1 2 2k 1 2k-1 3 2k-1 2 2k-2 \+\1 \+ There appears still another formula\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ F F - F = (-1)\ ( 10.11)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ n+1 n-1 n \+\1 \+ E.g. for n=5: 3*8 - 25 = -1. \, \- \+ \+ \ \ \ It can be formulated in the matrix form\, \- \+ \+\8pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ pp\ \ \ \ \ \ \ \ pp\1n \8pp\1F F\ \ \ \ \8pp\ \ \ pp \11 1\ \8pp\, \-pp\ \2n+1\ \ \ n\ \ \ \8pp\ \ \ pp\ \ \ \ \ \ \ \ pp \+pp\ \ \ \ \ \ \ \ \ \ \ pp\ \2= \8pp\ \ \ \ \ \ \ \ pp \+pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ pp\ \ \ \ \ \ \ \ pp pp\1F F\ \ \ \ \8pp\ \ \ pp\ \11\ \ \ \ 0\ \8pp\, \-pp\ \2n\ \ \ \ \ n-1\ \8pp \+\1 \+ It leads to two things. The first one are eigenvalues of the \- \+ \+ matrix, see later \ chapters, the second one is \ the zero power of \- \+ \+ this matrix. It is\, \- \+\8 \+pp\ \ \ \ \ \ \ \ pp\10\ \ \ \ \ \8pp\ \ \ \ \ \ \ \ \ pp pp \11 1\ \8pp\ \ \ \ \ \ pp\ \11\ \ \ \ \ 0\ \8pp\, \-pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ pp \+pp\ \ \ \ \ \ \ \ pp\ \ \ \1=\ \ \8pp\ \ \ \ \ \ \ \ \ pp \+pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ pp pp\ \11\ \ \ \ 0\ \8pp\ \ \ \ \ \ pp\ \10\ \ \ \ \ 1\ \8pp\, \-\1 \+ \+ On the \ diagonal the values \ Fööö and Fööö \ are. It gives \ a \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n+1\ \ \ \ \ \ n-1 \+\1 \+ possibility \ to \ prolongate \ the \ Fibonacci \ numbers to negative \- \+ \+ indices. This queue \ must be: 1, -1, 2, -3, \ 5, -8, ... We obtain \- \+ \+ them again as the sums \ of two consecutive Fibonacci numbers, row \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \1sums of \ the elements of \4B \ \1or as elements of \ their generating \-\/ \+ \+ matrix\, \- \+ \+ \8pp\ \ \ \ \ \ \ \ pp\1n\, \-\8pp \10 1\ \8pp \+pp\ \ \ \ \ \ \ \ pp \+pp\ \ \ \ \ \ \ \ pp pp\ \ \ \ \ \ \ \ pp\, \-pp\ \11\ \ \ -1\ \8pp \+\1 \+ \, \- \+ \+ \, \- \=