\1cw Verze 2.10 \pTM 0 \pBM 0 \pPL 120 \pLM 1 \pRM 65 \HD \+ \= \HE \+ \= \FD \+ \= \FE \+ \= \+ \+ \"8. G R O U P S O F C Y C L I C P E R M U T A T I O N S\, \-\1 \+ \+ 8\4.1 Notion of cyclic permutations\, \-\1 \+ \+ Suppose that we have n labelled objects arranged in an natural \-\/ \+ \+ order and \ we change their \ positions. It is \ convenient to write \- \+ \+ this operation \ in two lines, \ one corresponding to \ the starting \-\/ \+ \+ position, the second one giving the final position. E.g.\, \- \+ \+ Start 1 2 3 4 5 6\, \- \+ \+ 1. Step 2 3 1 5 4 6\, \- \+ \+ The first 3 objects \ are permuted in a cycle of \ length 3, the \-\/ \+ \+ next 2 form \ a cycle of length \ 2 and the last \ object remains on \- \+ \+ its \ place. By \ repeating \ the \ procedure \ we \ obtain permutations \-\/ \+ \+ 2 till 6.\, \- \+ \+ 2. Step 3 1 2 4 5 6\, \- \+ \+ 3. Step 1 2 3 5 4 6\, \- \+ \+ 4. Step 2 3 1 4 5 6\, \- \+ \+ 5. Step 3 1 2 5 4 6\, \- \+ \+ 6. Step 1 2 3 4 5 6\, \- \+ \+ 7.\ Step 2 3 1 5 4 6\, \- \+ \+ The string returns in the 7. \ step to the initial order. The \-\/ \+ \+ starting position, \ corresponding to the diagonal \ unit matrix \4I\1, \- \+ \+ can be \ considered as the \ zero order. The \ last element remained \- \+ \+ alvays in its original position \ and the first three elements re-\A \- \+ \+ turned \ to \ their \ positions \ twice \ and \ two elements made three \- \+ \+ turns. The length of the total cycle is the product of individual \- \+ \+ cycles: 3*2*1 = 6. The individual cycles are written usually with \-\2 \+\1 \+ elements forming cycles in \ brackets: (2,3,1)(5,4)(6).\, \-\2 \+\1 \+ Linear \ translations \ can \ be \ wiewed \ as \ strings of cyclic \-\2 \+\1 \+ permutations\, \-\2 \+\1 \+ \4\ \ \ \ \ \ \ P\ \ \ \ \ \ \ \ \ P\ \ \ \ \ \ \ \ \ \ \ \ \ P\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ P\, \-\2\ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4 \+\1 \+\8\ \ \ pp\ \ \ \ pp\ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 1\8pp pp\11 0 0\8pp pp\11 0 0 0\8pp pp\11 0 0 0 0\8pp\, \-\ \ \ pp\ \ \ \ pp\ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ pp\ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ pp\ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 0\8pp pp\10 0 1\8pp pp\10 1 0 0\8pp pp\10 1 0 0 0\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ pp\ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 1 0\8pp pp\10 0 0 1\8pp pp\10 0 1 0 0\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 0 1 0\8pp pp\10 0 0 0 1\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 0 0\ \ 1 0\8pp\, \-\1 \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \7 T\1he string \4P P P P \1transform \ the vector (1,0,0,0) into the \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4\ 3\ 2\ 1\/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1vector (0,0,0,1,) .\, \- \+ \+ Here we use at first the notion of partitions. The number of \-\/ \+ \+ elements n splits into k cycles, k going from 1 till n. The cycle \-\/ \+ \+ structure is described by partition orbits.\, \- \+ \+ We can map the cycle changes as additive operators \4S\1, having \-\2\/ \+\1 \+ zero rows for unmoved objects (+1 and -1 appear on the same place \-\2 \+\1 \+ s ). This operator \ is formed by cycles. But now \-\2\ ij \+\1 \+ we will study the multiplication \ operators \4P\1. Their matrices are \- \+ \+ naive, they have \ in each row only one \ unit element and moreover \- \+ \+ only one unit element in each column. The matrices \4P \1are simulta-\A \-\2 \+\1 \+ neously notations of permutations, \ since their row unit elements \-\2\/ \+\1 \+ p correspond to symbols j.\, \-\2\ ij \+\1 \+ Using multiplicative operators, \ permutations are results of \- \+ \+ multiplications of the row vectors by the unit permutation matrix \- \+ \+\2 \4P \1from the \ right and column \ vectors by the \ multiplication with \- \+ \+\2 \1the \ permutation matrix \ from the \ left. Different \ steps can \ be \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \1written as powers of these \ matrices \4P \1, the unit diagonal matrix \- \+ \+\2\ \ \ \ \ 0 \4I \1= \4P \1. The last \ but one power of any \ permutation matrix is its \- \+ \+\2\ \ \ \ \ \ \ \ \ -1\ \ \ \ n-1 \1inverse \4P \1= \4P \2. \1It is rather easy to find this matrix, becau-\A \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1se it is identical with the transposed matrix \4P \1. \, \- \+ \+ The set \ of all permutation \ matrices \4P \1with n rows \ and co-\A \-\/ \+ \+\2 \1lumns \ represents all \ possible permutations. \ A special class of \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1permutation \ matrices are \ symmetrical \ ones, \ which have \ \4P \1= \4P \-\1 \+ \+\2\ \ -1 \1= \4P \1. Such matrices \ have all unit elements either \ on the diago-\A \- \+ \+ nal, or otherwise, they form cycles of the length 2. These permu-\A \-\/ \+ \+ tations \ are known \ as \ \4convolutions\1. \ We will \ find a surprising \-\/ \+ \+ technique for their generating.\, \- \+ \+ \48.2 Young tables\, \-\1 \+ \+ Here we return to Ferrers \ graphs. We will reconstruct their \-\/ \+ \+ sequence, finding all ways how they can be formed from lower ones \- \+ \+ by adding one element. For it, we will index order, each new pla-\A \- \+ \+ ce appeared inthe larger Ferrers graph. Eqivalent places will ha-\A \-\/ \+ \+ ve different \ indices, because they \ can be reached \ in different \- \+ \+ steps. Such labelled Ferrers graphs are known as Young tables. \, \-\/ \+ \+ E. g.\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u-o \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ p \1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m-. \+\ \ \ \ u----o \+\ \ \ \ p\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u-o \1 \ 1 2\ \8p\11\8p\, \-\ \ \ \ m----.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ p \+\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m-. \1\, \- \+ \+\8\ \ \ \ u-------o\ \ \ p----o\ u----o\ \ \ \ \ \ \ \ \ \ u-o \1\ \ \ \ \ 1 2 3\ \8p\11 2\8p p\11 3\8p \ \ p\11\8p\, \-\ \ \ \ m-------.\ \ \ p\ \ \ \ p\ p\ \ \ \ p\ \ \ \ \ \ \ \ \ \ p\ p \+\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\12\8p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m----.\ m----.\ \ \ \ \ \ \ \ \ \ p\ p \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m-. \+\1 \+ Young tables \ are connected with permutations \ by the follo-\A \-\/ \+ \+ wing algorithm:\, \- \+ \+ 1. If a greater index follows a lesser one, it is written in \-\/ \+ \+ the next free column of the Young table. \, \- \+ \+ 2. If a lesser index follows a greater one in a permutation, \, \- \+ \+ it replaces it \ in its column \ of the Young \ table and shifts \ it \-\/ \+ \+ down to the next row. For example:\, \- \+ \+ 3412 \8---\1> 3 4 \ \8---\1> \ 1 4 \8----\1> 1 2\, \- \+ \+ 3 3 4 \, \- \+ \+ or : 4231 \8----\1> 4 \8----\1> 2 \8----\1> 2 3 \8----\1> 1 3\, \- \+ \+ 4 4 2\, \- \+ \+ 4\, \- \+ \+ The algorithm has one property, which seems to be its disad-\A \-\/ \+ \+ vantage, but \ it only reproduces \ relations between permutations. \- \+ \+ It allows that an asymmetric permutation matrix can be decomposed \- \+ \+ differently \ according to \ its rows \ and columns. \ But both Young \-\/ \+ \+ tables belong to an equal type of Ferrers graphs. For example:\, \- \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \10 0 0 1 0 0 0 \8p \14\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ u---------o \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ p \10 0 0 0 0 1 0 \8p \16 \8p\11 3 7\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ u---. \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \10 1 0 0 0 0 0 \8p \12 \8p\12 5\8p\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p \10 0 0 0 1 0 0 \8p \15 \8p\14 6\8p\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ m-----. \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \10 0 0 0 0 0 1 \8p \17\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11 0 0 0 0 0 0 \8p \11\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \10 0 1 0 0 0 0 \ 3\, \-\8---------------------------. \+\1 \+ 6 3 7 1 4 2 5 \ \, \- \+\8\ \ u----------o \+\ \ p\ \ \ \ \ \ \ \ \ \ p p \11 2 5\8p\, \-\ \ p \+\ \ p\ \ \ \ \ \ \ u--. \+\ \ p\ \ \ \ \ \ \ p p \13 4 \8p\, \-\ \ p\ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ \ \ p \1 \ 6 7\, \-\8\ \ m-------. \+\1 \+ Remember, \ that convolutions \ have symmetrical \ matrices and \-\/ \+ \+ that at them column and row readings are identical. A permutation \- \+ \+ matrix or \ a Young table is \ always a product of \ two permutation \- \+ \+ matrices or Young tables of the \ same format. They can be identi-\A \- \+ \+ cal in \ case of convolutions, \ but mostly they \ are different for \- \+ \+ rows and columns, as\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \ \ \ \ \ p \11 0 0\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \ \ \ \ p \10 0 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p p \10 1 0\, \- \+\8\ \ \ \ ---------k--------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \1 0 1 0 \8p \10 0 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 0 0 \8p \11 0\ \ 0\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ p \1 0 0 1 \8p \10 1 0\ \ \ \ \ \ \ \ \ \ \ (a,c,b)*(b,a,c) = (c,a,b)\, \- \+ \+ So there appears a relation between the number of partitions \-\/ \+ \+ orbits p(n), \ the number of Young \ tables Y(n) and the \ number of \-\/ \+ \+ permutation matrices P(n).\, \- \+ \+\2 \1 The Young tables are formed from Ferrers graphs by an recur-\A \-\/ \+ \+\2 \1sive algorithm. If we use for \ the number of Young tables corres-\A \- \+ \+\2 \1ponding \ to a Ferrers \ graph with \ an index \ k the notation y(k), \-\/ \+ \+\2\ \ \ \ \ 0 \1then y (k) = 1, \ and we have \ the relation between \ the number of \-\/ \+ \+\2 \1partitions and the number of \ Young tables Y(n). Similarly, if we \- \+ \+\2 \1square all y(k), we obtain all permutations of n elements. There-\A \-\/ \+ \+\2 \1fore\, \- \+ \+\2\ \ \ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 \7S \1y\ (k) = p(n); \7S \1y(k) = Y(n) ; \7S \1y\ (k) = P(n) = n! (8.1)\, \- \+ \+ Here n! means n factorial. It is a product of the successive \-\/ \+ \+\2 \1natural numbers: \, \-\2 \+\1 \+\2\ \ \ \ \ \ n \7 P \1k = n!. \, \-\2\ \ \ \ \ k=1 \+\1 \+ We will explain \ this function later, when we \ will look for \-\/ \+ \+ other formulas determining the number of permutations. Before it, \- \+ \+ we will study convolutions. Here we give an example, how equation \- \+ \+ (8.1) works. \ The corresponding Young tables \ are counted on Fig. \-\/ \+ \+ 8.1:\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \22\ \ \ \ 2\ \ \ \ \ \ \ 3\ \ \ \ \ 5\ \8p \1Partition: \8p \15; 4,1; 3,2; 3,1\ ; 2\ 1; 2,1\ ; 1\ \8p\7S \17\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1y(k) \8p \11 4 5 6 5 4 1 \8p \126\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\2\ 2\72\ \ \ \ \ \ \ \ \ \8p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1y\ (k) \8p \11 16 25 36 25 16 1 \8p \1120\, \- \+ \+ \48.3 The number of convolutions\, \-\1 \+ \+ The \ number of \ convolutions is \ the number \ of all possible \-\/ \+ \+ connections in a telephone network, too. We classify all convolu-\A \- \+ \+ tions according to \ the number of elements which \ remain on their \- \+ \+ places, it \ means unconnected. It \ is easy to \ fill the following \-\/ \+ \+ table\, \- \+ \+ \4Table 8.1 Distribution of convolutions\, \-\1 \+\8------------i----------------------------i--- \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1On diagonal \8p \10 1 2 3 4 5 6 \8p \7S\, \-\1 \+\8------------k----------------------------k--- \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n= 0 \8p \11 \8p \11\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \10 1 \8p \11\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 0 1 \8p \12\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \10 3 0 1 \8p \14\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \13 0 6 0 1 \8p \110\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \10 15 0 10 0 1 \8p \126\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p\115 0 45 0 15 0 1 \8p \176\, \- \+ \+ The reccurence of table elements is \, \-\2 \+\1 \+ \ \ \ \ \ \ \ \ y\ \ = 1; y\ \ = (i - 1)y\ \ \ \ \ + y\ \ \ \ \ \ \ (8.2)\, \-\2\ \ \ \ \ \ \ \ \ 00 \ \ \ ij\ \ \ \ \ \ \ \ \ \ \ i-2,j\ \ \ \ i-1,j-1 \+\1 \+ The inverse table \ has the same elements, only \ the signs at \-\/ \+ \+ elements which indices differ by the value (4k + 2) are negative. \- \+ \+ All \ convolution matrices \ are obtained \ by adding \ 1 on the last \- \+ \+ place \ of diagonal. \ These convolutions \ are counted \ by the term \-\2 \+\1 \+ y . If we \ add the unit element in the \ last row off diago-\A \-\2\ i-1,j-1 \+\1 \+ nal, we must \ simultaneously add an unit element \ in the last co-\A \- \+ \+ lumn into the corresponding row, i=j. \ There are (n - 1) off dia-\A \- \+ \+ gonal places where \ it is possible to form \ a new convoluted pair \- \+ \+ to j already existing pairs in a matrix of convolutions. This new \- \+ \+ pair occupies two rows and columns \ and therefore it is formed in \- \+ \+ matrices with (n - 2) rows and \ columns. It does not increase the \- \+ \+ number of elements on the diagonal, so it increases the number of \-\/ \+ \+ elements in the same column.\, \- \+ \+ A similar reccurence is applied to the row sums counting the \-\/ \+ \+ total number of convolutions\, \- \+ \+ \ \ \ \ \ \ \ \ Y(n) = (n - 1)Y(n - 2) + Y(n - 1) (8.3)\, \- \+ \+ It is \ possible to determine \ the elements of \ the Table 8.1 \-\/ \+ \+ directly, because they are calculated according to the formula\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ t \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y\ \ = i !/j!t!2\ (8.4)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+ where t \ = (i - j)/2 is \ the number of \ cycles of length \ 2. \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 \1This formula \ contains 3 factorials. The \ term 2 eqilibrates the \- \+ \+ string of \ t divisors. Notice, that \ (8.4) counts together \ Young \- \+ \+ tables of different formats, they \ must have only the same number \-\/ \+ \+ of columns. Still \ another expression \ of the \ number of convolu-\A \-\/ \+ \+ tions is a formal binomial equation\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Y(n) = (1 + y\ )\ \ (8.5)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \+\1 \+\2 \1 where the terms in the first column of the Table 8.1 y are \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k0\/ \+\1 \+\2 \1considered \ as powers \ of y at \ the multiplication \ of the sum \, \-\2 \+\1 \+\2\ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6 \1(1 + y): y = y \2. \1E. g. (1 \ + y) = 1*1 \ \ + 6*0 \ \ + 15*1 \ + 20*0 \-\2\ \ \ \ \ \ \ \ \ i\ \ \ \ k0\/ \+\1 \+\2 \1+ 15*3 + 6*0 +1*15 = 76.\, \-\2 \+\1 \+\2 \1 The convolutions \ counted by these terms have no elements on \-\2\/ \+\1 \+\2 \1the main \ diagonal and are \ obtained by multiplying \ odd numbers. \-\2\/ \+\1 \+\2 \1They are \ odd factorials, since they \ are obtained by consecutive \-\2 \+\1 \+\2 \1multiplications of odd numbers: 1*3*5*7*9*11*13*15* and so on.\, \-\2 \+\1 \+\0 \48.4 Index of cyclic permutations\, \-\1 \+ \+ The number \ of all permutation \ matrices P(n) is \ determined \-\/ \+ \+ easily by counting possibilities how to arrange units in rows and \- \+ \+ columns \ in a permutation \ matrix. In \ the first \ row, there \ are \- \+ \+ n possibilities, in the second one \ column is blocked by the ele-\A \- \+ \+ ment of the \ first row. The second row element \ can not be in the \- \+ \+ same column. The opportunities decrease regularly. In each row (n \- \+ \+ - i) remaining places are \ free. These opportunities are indepen-\A \- \+ \+ dent and therefore they multiply for \ all rows. We get the facto-\A \-\/ \+ \+ rial \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ P(n) = n*(n-1)*..*2*1 =\7P\ \ \ \1j = n! (8.6)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j=1 \+\1 \+ We complete this \ definition by the term \ 0! = 1. We already \-\/ \+ \+ did something \ similar, defining the empty \ partition. Here it is \- \+ \+ possible by defining the function gamma as a function of a conti-\A \- \+ \+ nuous argument \7G\1(x) = x\7G\1(x-1). Inserting \ x = 1 we obtain the va-\A \- \+ \+ lue of \7G\1(0) easily: 1! = \ 1*1!. The function gamma coincides with \- \+ \+ factorials of natural numbers.\ It is difficult to calculate valu-\A \-\/ \+ \+ es of the gamma function for rational and irrational numbers. But \- \+ \+ we can estimate the behaviour of this function for negative argu-\A \- \+ \+ ments. It oscillates \ there from minus to plus \ infinity. In area \- \+ \+ of positive numbers, \ it is an evergrowing function. \ There is no \- \+ \+ solid space in area of \ negative numbers. \, \- \+ \+ The factorial function has \ an interesting property. If p is \-\/ \+ \+ a prime number, then \ (p -1)! mod p = (p \ - 1) and simultaneously \- \+ \+ (p -2)! mod p = 1. If this value were other one, say a, then be-\A \- \+ \+ cause the factorial is divisible by all its factors, say b chosen \- \+ \+ in such \ a way, that a + \ b = p, the factorial were \ divisible by \- \+ \+ the prime \ number greater than its \ factors, which is impossible. \- \+ \+ For example: p =7, 720 mod 7 \9_ \16, 120 mod 7 \9_\ \11.\, \- \+ \+ After this transgression, we return to permutations and find \-\2\/ \+\1 \+ formulas, how to determine their numbers at each cycle structure. \-\2 \+\1 \+\2 \1This cycle structure \ forms an orbit of permutations \ and the sum \-\2 \+\1 \+\2 \1over \ all orbits \ gives the \ factorial. A partition \ orbit counts \-\2 \+\1 \+\2 \1 all permutations of \ an cycle s of \ the length k. \ If there are \-\2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+\2 \1more cycles of equal length, \ their lengths s multiply. This gi-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ t \1ves \ terms s \2k\1, \ where t is \ the number \ of cycles s . Moreover \-\2\ \ \ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+ different cycles of \ equal length can be permuted \ against them-\A \- \+ \+ selves when \ their elements interchange. \ This interchanges \ are \-\/ \+ \+ counted by \ partial factorials t !. The \ index of cyclic permuta-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\/ \+\1 \+ tions is\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ t \1 n!/\7P\1n !s \2k\, \-\ \ \ \ \ \ \ \ \ \ k\ \ k \+\1 \+ For example for n = 4 : \, \- \+\8\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Orbit \ Cycle index \ Value\, \-\8--------k--------------------k--------------- \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \21\ \ \ \ \ \ \ \ \ \ \8p \14 \8p \14!/1!4\ \8p \16\, \-\8\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \21\ 1\ \ \ \ \ \ \8p \131 \8p \14!/1!1!3\ 1\ \8p \18\, \-\8\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \22\ \ \ \ \ \ \ \ \ \ \8p \122 \8p \14!/2!2\ \8p \13\, \-\8\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\2\ \ 2\ \ \ \ \ \8p\ \ \ \ \ \ \ \ \ \ \ \21\ 2\ \ \ \ \ \ \8p \121\ \8p \14!/1!2!2\ 1\ \8p \16\, \-\8\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\2\ 4\ \ \ \ \ \ \8p\ \ \ \ \ \ \ \ \ \24\ \ \ \ \ \ \ \ \ \ \8p \11\ \8p \14!/4!1\ \8p \11\, \- \+\8--------k--------------------k------------ \+\ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p p \1Sum 24\, \- \+\8 \+\1 \48.5 Permutation schemes\, \-\1 \+ \+ We introduced orbit schemes and now we have the first opportu-\A \-\/ \+ \+ nity to exploit \ them for making partial sums \ of cyclic indices. \- \+ \+ These partial sums are known as different combinatorial identiti-\A \- \+ \+ es. At first, we will arrange \ partition schemes according \ to the \- \+ \+ number of \ cycles in permutations \ and the length \ of the longest \-\/ \+ \+ cycle k. E. g. for n = 6 we get\, \- \+\8\ \ \ \ \ p \+\ \ \ \ \ p \1n \ 1 2 3 4 5 6\, \-\8-----k----------------------------- \+\ \ \ \ \ p \+\ \ \ \ \ p \1k=6 \8p \1120 \, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 5 \8p \1144\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 4 \8p \190 90\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 3 \8p \140 120 40\, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 2 \8p \115 45 15 \, \-\8\ \ \ \ \ p \+\ \ \ \ \ p \+\ \ \ \ \ p \1 1 \8p \11\, \- \+\8-----k----------------------------- \+\ \ \ \ \ p \7 S \8p\1120 274 225 85 15 1\, \- \+\8 \+\1 The row sums of consecutive schemes \ give the Table 8.2 of the \-\/ \+\8 \+\1 Stirling numbers of the first kind. Their name witness that the-\A \- \+\8 \+\1 re are more \ kinds of Stirling numbers. They \ are related by many \-\/ \+\8 \+\1 ways which we will see later.\, \- \+ \+ \4Table 8.2 Stirling numbers of the first kind\, \-\1 \+\8----i-----------------------------------i----- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1t \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k-----------------------------------k----- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \12 3 1 \8p \16\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \16 11 6 1 \8p \124\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \124 50 35 10 1 \8p \1120\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \1120 274 225 85 15 1 \8p \1720\, \-\8\ \ \ \ p \+\1 \+ The recurrence of Stirling numbers is \, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ \ s\ \ = (n - 1)s\ \ \ \ \ + s\ \ \ \ \ \ \ (8.8)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ ij\ \ \ \ \ \ \ \ \ \ \ i-1,j\ \ \ \ i-1,j-1 \+\1 \+ The formula was explained by describing how permutation mat-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \/ \+\1 \+ rices \4P \1are increased with the \ new row and column. We have (n \-\2\ \ \ \ \ \ \ n-1 \+\1 \+ - 1) off diagonal places in the \ last row which split (n - 1) di-\A \-\2 \+\1 \+ mensional permutation matrices and prolong some existing cycle or \-\2 \+\1 \+ cycles but do \ not change their number. Then we \ can add the unit \-\2 \+\1 \+ element on the diagonal, but \ this operation increases the number \-\2 \+\1 \+ of cycles of \ unit length. So we obtain \ the intermediate sums of \-\2 \+\1 \+ several cycle indices directly \ without changes of all correspon-\A \-\2 \+\1 \+ ding orbits. Remember that these sums correspond to vertices, ed-\A \-\2 \+\1 \+ ges, \ surfaces and \ generally n dimensional \ subsimplices of \ the \-\2 \+\1 \+ surface simplex. But \ here they split only one \ original orbit in \-\2\/ \+\1 \+ the center of the plane simplex.\, \-\2 \+\1 \+ \48.6 Rencontres numbers\, \-\1 \+ \+ Another possibility \ how to count \ permutations is to \ use the \-\/ \+ \+ number of unit cycles, to determine the unit elements on the main \, \- \+ \+ diagonal of the unit permutation matrices, known \ as unmoved ele-\A \- \+ \+ ments. We have \ shown, how the counts of \ partitions are obtained \- \+ \+ according to the number of \ ones in partitions. Using this scheme \- \+ \+ for tabulating permutation indices, we \ get the column sums known \-\/ \+ \+ as the rencontres numbers. They are shown in the Table 8.3.\, \- \+ \+ \4Table 8.3 Rencontre numbers\, \-\1 \+ \+\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1s\ \8p \10 1 2 3 4 5 6 \8p \7S\, \-\2\ 1 \+\8-----k------------------------------------------k---- \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=0 \8p \11 \8p \11\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \10 1 \8p \ \11\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 0 1 \8p \12\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \12 3 0 1 \8p \16\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \19 8 6 0 1 \8p \124\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \144 45 20 10 0 1 \8p \1120\, \-\8\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \1265 264 135 40 15 0 1 \8p \1720\, \- \+ \+ The reccurence \ is somewhat surprising, \ the rencontres numbers \-\/ \+ \+ are obtained from the zero column by multiplying it with binomial \-\/ \+ \+ coefficients\, \- \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( \1i \0) \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ \ = \ \ \ \ \ r\ \ \ \ \ \ (8.9)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij\ \ \ \09 \1j \00\ \2i-j,0 \+\1 \+ Compare it \ with the Table 5.6 \ of partitions ordered accor-\A \-\/ \+ \+ ding to the number of unit parts. Now these parts are just combi-\A \- \+ \+ ned with other parts. The elements \ of the table 8.3 are obtained \-\/ \+ \+ as terms of a somewhat complicated expression\, \- \+ \+ n! = 1 + (1 -1/1!)n + (1 -1/1! +1/2!)n(n-1) + ...\, \- \+ \+ which can be formulated as \, \- \+ \+\2\ \ \ \ \ \ k=n\ \ \ \ \ \ \ k \1n!\ = \7S \1( -1/k!) (n)\ . \, \-\2\ \ \ \ \ \ k=0\ \ \ \ \ \ \ \ \ \ \ k \+\6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \6t\6 \+\1 E.g.: 4! = 1 + 0 + (1/2)*12 + (2/6)*24 + (9/24)*24.\, \-\2 \+\1 \+ It is necessary to explain at least, that the binomial coef-\A \-\/ \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( \1i \0) \1ficient is a ratio of 3 factorials = i!/j!(i-j)!. How a bi-\A \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \1j \00 \+\1 \+ nomial coefficient is \ obtained, we will see later. \ Here we give \-\0\/ \+\1 \+ an example: 1*44 + 5*9 + 10*2 + 10*1 + 5*0 +1*1 = 120.\, \-\0 \+\1 \+ Numbers \ röö \ count \ permutations \ matrices \ with \ i \ rows and \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ io \+\1 \+ columns having \ no unit elements \ on the diagonal. These \ matrices \-\2 \+\1 \+ are combined \ with the diagonal \ unit matrices \4I \ \1with (i-j) rows \-\2 \+\1 \+ and \ columns \ in \ all \ possible \ ways \ counted \ by \ the \ binomial \-\2 \+\1 \+ coefficient.\, \-\2 \+\1 \+ Rencontre numbers r are known also as subfactorials, because \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i0\/ \+\1 \+\2 \1they produce \ factorials by the following \ equation, where formal \-\2\/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \1powers of subfactorials r = r are inserted:\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n! = (r\ + 1)\ (8.10)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \+\1 \+ It is possible \ to formulate (8.9) also in \ the matrix form as \-\/ \+ \+\2 \1the direct product \7D\1(n!) = \4R\1*\4B \1, where \4R \1is the matrix of subfac-\A \-\/ \+ \+\2 \1torials in rows and \4B \1is \ the matrix of binomial coefficients. In-\A \-\2\/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1versing the formal powers we \ have r(n) = (k! - 1). Inserting \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\/ \+\1 \+\ \ \ \ n (k!) = n! we obtain the formula \, \- \+ \+\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( \1n \0)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\1n\0)\ \ \ \ \ \ \ \ \ \ \ \ \2n \1n! - n(n-10)! + \ \ \ \ \ (n-2)! - ....+/-\ \ \ (n-n)! =(k!)\, \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \12 \00\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9\1n\00 \+\1 \+ This becomes for n going to infinity\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1n![1 - 1 \ + 1/2! - 1/3! + \ .....] \9= \1n/eö, where e \ is the base of \- \+ \+ natural \ logarithms. This \ approximate \ formula \ is known \ as the \- \+ \+ rough Stirling approximation for factorials of large numbers.\, \- \+ \+ We should mention still another formal notation for subfacto-\A \-\/ \+ \+ rials. It is the notation of \ the theory of finite differences. It \- \+ \+ will be explained in Chapter 11.4\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ (n) = [E - 1]\ 0! = \7D\ \10! (8.11)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \+\1 \+\2\ \ \ \ \ \ \ \ \ n \1 Here \7Dö \1is not a diagonal \ matrix but a difference of the n-th \- \+ \+\2 \1degree, or n times repeated difference \ of the basic state E.\, \- \+ \+\2 \1 We rencontre rencontre numbers in Chapter 16, again. \, \- \+ \+ There exists still another reccurence for subfactorials\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r\ \ = nr + (-1)\ (8.12)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n0\ \ \ \ n-1,0 \+\1 \+ e.g. 5*9 - 1 \ = 44; 6*44 + 1 = 245. When we \ return to the parti-\A \-\/ \+ \+ tion scheme in Table 8.3 and reclassify permutations without unit \- \+ \+ cycles according to the number of \ cycles, or when we delete from \- \+ \+ the original \ scheme (Table 8.2) all \ permutations with unit cyc-\A \-\/ \+ \+ les, we obtain the Table 8.9 \ of the adjoined Stirling numbers of \-\/ \+ \+ the first kind.\, \- \+ \+ \4Table 8.9 Adjoined Stirling numbers of the first kind\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1j \8p \10 1 2 3 \8p \7S\1= r\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i0 \+\8----k--------------------------k------- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1i=0 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \10 \8p \10\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \12 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \16 3 \8p \19\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \124 20 \8p \144\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \1120 130 15 \8p \1265\, \- \+ \+ The reccurence is \, \- \+ \+ \ \ \ \ \ \ \ \ \ \ a\ \ \ \ \ = i[a\ \ + a\ \ \ \ \ \ \ ] (8.13)\, \-\2\ \ \ \ \ \ \ \ \ \ \ i+1,j\ \ \ \ \ ij\ \ \ \ i-1,j-1 \+\1 \+ It \ is justified \ again by \ possibilities, how \ to insert a new \-\/ \+ \+ element to existing cycles. Either we \ can insert it into an exis-\A \- \+ \+ ting cycle. It is simpler, if \ we formulate it for (i + 1) matri-\A \- \+ \+ ces. There \ we have in (i \ + 1) dimensional matrix i off-diagonal \- \+ \+ opportunities. Or we can add \ a new 2 dimensional cycle to matri-\A \-\/ \+ \+ ces with (i - 1) rows with the same number of possibilities.\, \- \+ \+ \8.7 Euler numbers\, \-\1 \+ \+ We have not exhausted all possibilities how to classify per-\A \-\/ \+ \+ mutations. Another \ statistics counts the \ number of segments \ of \- \+ \+ a permutations in \ which its elements \ are arranged according \ to \- \+ \+ their \ natural order \ as increasing \ indices. E.g. \ a permutation \- \+ \+ 357/1689/4/2 has \ 4 segments. The reccurence \ of this statistics, \-\/ \+ \+ known as Euler numbers, is:\, \- \+ \+ \ \ \ \ \ \ e\ \ = 1; e\ \ = je\ \ \ \ \ + (i - j + 1)e\ \ \ \ \ \ \ (8.14)\, \-\2\ \ \ \ \ \ \ 11\ \ \ \ \ \ \ ij\ \ \ \ \ i-1,j\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i-1,j-1 \+\1 \+ If we \ give the i-th element \ on the end of \ each segment, the \-\/ \+ \+ number \ of segments \ remain unchanged. If \ we put \ it on the first \- \+ \+ place, we increase \ the number of segments. Similarly, \ if we put \- \+ \+ it inside \ an existing segment, \ this is then \ splitted into two. \- \+ \+ There are (i - j) \ places inside segments. An alternative explana-\A \- \+ \+ tion is, that this statistics \ counts elements of permutation mat-\A \- \+ \+ rices, which are over the main diagonal. Here the index j goes from \-\/ \+ \+ 0 till (n-1). The corresponding matrix is Table 8.10.\, \- \+ \+ \4Table 8.10 Euler numbers\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1j \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k------------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1i=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 4 1 \8p \16\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 11 11 1 \8p \124\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 26 66 26 1 \8p \1120\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \11 57 302 302 57 1 \8p \1720\, \- \+ \+ \8\, \-\1 \+ \+ Till now we have counted permutations as objects. Now we will \- \+ \+ count \ their moments, \ expressed by \ the number \ of inversions in \-\/ \+ \+ permutations. They are counted by zero elements over unit elements \- \+ \+ which are below \ the main diagonal as in the \ example, where 4 on \- \+ \+ the first place has 3 inversions and 3 on the second place only 2\, \- \+ \+ * * 1 0\, \- \+ \+ * * 0 1\, \- \+ \+ * 1 0 0\, \- \+ \+ 1 0 0 0\, \- \+ \+ Permutations counted \ according to this \ method give the \ Mac \- \+ \+ Mahon numbers as in Table 8.11\, \- \+ \+ \4Table 8.11 Mac Mahon numbers\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1k \8p \10 1 2 3 4 5 6 7 8 9 10 \8p \, \-\1 \+\8----k---------------------------------------------l \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=1 \8p \11\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 2 2 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 3 5 6 5 3 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 4 9 15 20 22 20 15 9 4 1 \8p\, \-\ \ \ \ p \+\1 \+ Notice, that \ here the parameter \ k does not end \ at the number \-\/ \+ \+ n but it continues till the value \ n(n-1)/2. It is as if we coun-\A \- \+ \+ ted these values on the \ diagonal of a square. The maximal moment \- \+ \+ k is just the sum of values \ (i-1) where i is going from 1 till n\, \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \ \ \ \ \ \ \0( \1n \0) \7\ \ \ \ \ \ \ \ \ \ \ S \ \ \1(i - 1) = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8.15)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ i=1\ \ \ \ \ \ \ \ \ \ \ \09 \12 \00 \+\1 \+ The distribution of moments \ is symmetric, therefore the matrix \- \+ \+ elements are \ related as möö = \ möööööööööööööö. The reccurence of \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ik\ \ \ \ \ i,[i(i-1)/2]-k \+\1 \+ Mac Mahon numbers is \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \1\ \ \ \ \ \ \ \ \ \ \ \ m(m,n) = \7S \ \ \1(m-k,n-1) ; m \2= \11 (8.16)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k=0\ \ \ \ \ \ \ \ \ \ \ \ 10 \+\1 \+ or for the k \9< \1i: m = m + m . If we add to a lesser \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij\ \ \ \ i-1,j\ \ \ \ i,j-1\/ \+\1 \+ permutation matrix \ the unit element on \ the last diagonal place, \-\2 \+\1 \+ it \ does not \ change the \ sum of \ displacements. It gives the term \-\2 \+\1 \+ m . Matrices counted by the \ term m are sums of elements \-\2\ i-1,j\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i,j-1 \+\1 \+ of previous rows which moments are increased by adding a new ele-\A \-\2 \+\1 \+ ment into the corresponding \ column. They have the required dimen-\A \-\2 \+\1 \+ sionality. Their moments are increased by permutations of the last \-\2\/ \+\1 \+ element into the first column.\, \-\2 \+\1 \+ \48.9 Spearman correlation coefficient\, \-\1 \+ \+ The \ sum \ of \ differences \ of \ permutations \ against \ the unit \- \+ \+ permutation \ is 0. \ These differences \ can be \ either positive or \- \+ \+ negative, but the sum of \ squared differences is always positive. \-\/ \+ \+ For exemple 1 2 3 4 5 \, \- \+ \+ 5 2 4 3 1\, \- \+ \+ 4 0 1 -1 -4\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ --------------------------- \+\1 \+ 16 0 1 1 16 \7S \1= 34\, \- \+ \+ If we divide obtained values \ by the largest possible sum of \-\/ \+ \+ squares, \ which is \ here 40, \ we obtain \ values going from 0 till \- \+ \+ 1 which characterize \ permutations and are known \ as the Spearman \- \+ \+ correlation coefficient. It is used for evaluation of probability \-\/ \+ \+ of an obtained rank statistics.\, \- \+ \+ Till now we have worked with permutations which could be read \- \+ \+ from one side, only. But recall that we introduced as a matrix o-\A \- \+ \+ perations: \ transposing \ and \ transversing, \ which changed permuta-\A \- \+ \+ tions. Our \ symbols determine \ from which \ side they \ must be read \- \+ \+ (with \ some exceptions \ as W, \ A, 8, \ T and other symmetric sym-\A \- \+ \+ bols). Imagine now, that \ a permutation is represented by a string \-\/ \+ \+ of colored beads as\, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (red)-(blue)-(white)-(green)-(yellow)\, \- \+ \+ If we find it accidentally, we can not tell from which side we \-\/ \+ \+ should read it. The result is \ that we can not distinguish a half \- \+ \+ of permutations \ as: 123<-->321; 213<-->312; \ 132<-->231. The name \-\/ \+ \+ of such a group, which \ is undistinguishable at readings from both \- \+ \+ sides is dihedral.\, \- \+ \+ Still more \ complicated the situation \ is, if the \ string of \-\/ \+ \+ colored beads forms a necklage. Then we can not find not only the \- \+ \+ reading direction, but also \ the beginning of a permutation. Thus \- \+ \+ we \ have undistinguishable \ permutations: (123-231-312)<-->(213- \-\/ \+ \+ 132-321).\, \- \+ \+ From problems \ connected with these groups, \ we mention only \-\/ \+ \+ the task of menages: n maried couples should be seated at a round \- \+ \+ table in such a way that \ a woman should seat between 2 males but \-\/ \+ \+ not alongside her husband. For n = 4 there are 2 seating orders\, \- \+ \+ B a C C a D\, \- \+ \+ d * b d * b\, \- \+ \+ A c D B c A\, \- \+ \+ the menage numbers are:\, \- \+ \+\8\ \ p \1n \8p \10 1 2 3 4 5 6\, \- \+\8--k---------------------------- \+\ \ p p \12 -1 0 1 2 13 80\, \- \+ \+ The negative \ value at n \ = 1 is necessary \ for complying with \-\/ \+ \+ the reccurent relation:\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (n+1) \1\ \ \ \ \ \ (n - 2)U\ = n(n - 2)U\ \ \ + nU\ \ \ +4(-1)\ \ \ \ \ (8.17)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \ \ \ \ \ \ n-1\ \ \ \ n-2 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6 \1 For example: 3U\ = 15*2 + 5*1 + 4(-1)\ = 39. \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5 \+\1 \+ \48.11 Groups of symmetry\, \-\1 \+ \+ \ \ Till \ now \ we \ have \ supposed \ that \ vectors \ are defined in \- \+ \+ multidimensional \ space and \ that the \ number of \ permutations is \- \+ \+ determined by the dimensionality of \ the space. It is possible to \- \+ \+ define groups \ which are only \ isomorphic with some \ groups Sö of \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \+\1 \+ cyclic permutations. \ As an example \ we introduce the \ group of 6 \- \+ \+ matrices with 2 rows and columns, which is isomorphic with S\ :\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3 \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p \4I \8p\11 0\8p \4A \8p\11 0\8p \4D \8p\1-1/2 \0r\13/2\8p \, \-\ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p p\10 1\8p p\10 -1\8p p \0r\13/2 1/2\8p\, \-\1 \+ \+\8\ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p \4G \8p\1-1/2 -\0r\13/2\8p \4E \8p \11/2 \0r\13\ 2\8p \4P \8p\1-1/2 -\0r\13/2\8p\, \-\ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p \+\ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ p p\1-\0r\13/2 -1/2\8p p\1-\0r\13/2 -1/2\8p\ \ p\0r\13/2 -1/2\ \8p\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+ If we multiply by these matrices 2 dimensional matrices from \-\/ \+ \+ the right \ and from the \ left, there remains \ constant only their \- \+ \+ Euclidean length, \ and not the \ sum of their \ elements. Moreover, \- \+ \+ there remains constant also their \ determinant, if you know, what \- \+ \+ is it. The effect of these matrices can be shown on the unit cir-\A \- \+ \+\2 \1cle. Operators \4I \1and \4A \1are \ mutually orthogonal, the other matri-\A \-\/ \+ \+\2 \1ces rotate vectors for 2/3\7P\1, it is 120 degrees.\, \- \+ \+ Instead of \ cycles of different lenghts, \ new symmetry elements \- \+ \+ appear in the 3 dimensional geometry.\, \- \+ \+ There \ are \ rotation \ axes. \ If \ a \ figure \ has \ k dimensional \- \+ \+ rotation axis, \ it has k equivalent positions \ and returns to its \-\/ \+ \+ original \ position after \ k translations, which \ rotate it around \-\/ \+ \+ the axis. \, \- \+ \+ The other \ kind of symmetry elements \ is the reflection plane, \- \+ \+ which reflects a figure as a double sided mirror.\, \- \+ \+ These basic \ symmetry elements combine \ in different ways \ and \- \+ \+ they \ systems \ are \ known \ under \ different \ names. \, \- \+ \+ \48.12 Vierer gruppe\, \-\1 \+ \+ One system of 4 unit permutation matrices 4*4 is:\, \- \+ \+\8\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4I \8pp \11 \8pp \4A \8pp \11\ \ \ \ \ \ \ \ \ \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp pp \11\ \ \ \ \ \ \ \ \ \ \ \ \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp pp \11\8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp pp \11\, \- \+ \+\8\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4B \8pp \11 \8pp \4C \8pp \11\8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp pp \11\ \ \ \ \ \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp pp \11\ \ \ \ \ \ \ \ \ \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \ \ \ pp\ \ \ \ \ \ \11 \8pp pp \11\ \ \ \ \ \ \ \ \ \ \ \ \8pp\, \-\1 \+ \+ If \ we \ imagine \ that \ these \ matrices \ permute \ vertices of \-\2\/ \+\1 \+ a square, \4I \1is \ the identity, which leaves \ the square unchanged, \-\2 \+\1 \+ \4A \1and \4C \1reflect \ according to the \ planes perpendicular with \ the \-\2 \+\1 \+ sides of the square and \4B \1rotates \ the square about an axis going \-\2 \+\1 \+ through its \ center. The group contains \ all possible products of \-\/ \+ \+ these four matrices.\, \- \+ \+ With the \ group of these 4 matrices \ such groups of matrices \-\/ \+ \+ are \ isomorphic, \ which \ are \ obtained \ by \ multiplying \ the unit \- \+ \+ permutation matrices from the left \ by a suitable matrix and from \- \+ \+ the right by its inverse\, \- \+ \+\2\ \ \ -1 \4UPU \1= \4P\, \-\2\ \ \ \ \ \ \ \ a \+\1 \+\2\ \ -1 \4UU \1= \4I\, \-\1 \+ \+ Using Hadamard matrices (see later), we get another group of \- \+ \+ four matrices\, \- \+ \+ \4I \8pp \11 \8pp\ \ \ \ \ \ \ \4A \8pp \11 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp\ \ \ \ \ \ \ pp \11 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp\ \ \ \ \ \ \ pp \1-1 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp\ \ \ \ \ \ \ pp \1-1 \8pp\, \-\1 \+ \+ \4B \8pp \11 \8pp\ \ \ \ \ \ \ \ \4C \8pp \11 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \1-1 \8pp\ \ \ \ \ \ \ \ pp \1-1 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \11 \8pp\ \ \ \ \ \ \ \ pp \1-1 \8pp\, \-\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \1-1 \8pp\ \ \ \ \ \ \ \ pp \11 \8pp\, \-\1 \+ \+ Notice, that \ corresponding matrices have \ identical traces, \- \+ \+ which are known as characters of the group.\, \- \+ \, \- \+ \, \- \+ \+ \"9. N A I V E M A T R I C E S \ I N L 0 V E R \, \-\1 \+ \+ \" T R I A N G U L A R F O R M\, \-\1 \+ \+ \"\, \-\1 \+ \+ \49.1 Another factorial function\, \-\1 \+ \+ Before we will study all naive matrices \ \4N\1, we will deal \ with \-\/ \+ \+ the naive \ matrices in lower \ triangular form, which \ form a sub-\A \- \+ \+ group of naive matrices. The other naive matrices can be obtained \- \+ \+ from them by permuting columns with the unit permutation matrices \- \+ \+ from right. Recall \ that naive matrices have one \ unit element in \- \+ \+ each row. \ If a matrix is in \ the lower triangular form, then all \- \+ \+ its nonzero elements must be on or below the main diagonal. Simi-\A \- \+ \+ larly, if a matrix is in the \ upper triangular form, then all its \- \+ \+ nonzero elements \ must be on \ or over the \ main diagonal. From all \- \+ \+ permutation matrices only the \ identity matrix \4I \1has the triangu-\A \- \+ \+ lar form. \ But it exists simultaneously \ in both triangular forms \-\/ \+ \+ similarly as all diagonal matrices. \, \- \+ \+ Because all rows of the naive matrices are independent, the-\A \-\/ \+ \+ re is only one opportunity in the first row for the unit element, \- \+ \+ two places are in the second \ row and always one possibility more \- \+ \+\2 \1in each consecutive \ row. This situation is just \ opposite to the \- \+ \+\2 \1construction \ of permutation \ matrices. There \ the possibilities, \- \+ \+\2 \1how to \ place an unit element, \ decreased in every row. \ But both \- \+ \+\2 \1approaches \ give the \ same result. \ Therefore there \ are n! naive \- \+ \+\2 \1matrices in the lower triangular form, or in the case of transpo-\A \- \+ \+\2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1sed naive matrices \4N \1in the upper triangular form. We have shown \, \- \+ \+ how the transposed naive matrices \ can be mapped onto points with \, \- \+ \+ natural coordinates in m-dimensional cubes.\, \- \+ \+ If \ we leave \ the first \ column as \ a dummy \ variable for \ the \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \1center of the \ coordinate system: \4e\1ö = 1, \ the naive matrices can \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ be compared with terms of the formal multiplication\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n\ \0( \2n \0) \1\ \ \ \ \ \ \ \ (1)(1 + a)(1 + a + b)... = \7P\ \ \ \ S\ \4e\ \ \ \1(9.1)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i=1\09 \2j=1 j \00 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1 All transposed matrices \4N \1are \ placed in m-dimensional rec-\A \-\/ \+ \+ tangular parallepiped \ which sides are \ 0,1,2,3,..,(n-1). We will \- \+ \+ repeat with these matrices all classifications as with the permu-\A \- \+ \+ tation matrices. \ Matrices with m rows form \ in these paralepides \- \+ \+ the factorial plane simplices. Compare them with the generating func-\A \- \+ \+ tion of \ partitions, explained in Chapter \ 5.10, where the number \-\/ \+ \+ of elements decreased, too, but from other reasons.\, \- \+ \+ \49.2 Decreasing order classification\, \-\1 \+ \+ In \ preceding chapter \ we \ have \ introduced Young \ tables and \- \+ \+ compared them with convolutions having \ cycles of length 1 and 2, \- \+ \+ only. \ For naive \ matrices the \ Young tables \ correspond to naive \- \+ \+ matrices \ which partial \ column sums \ are always \ ordered in \ the \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ \ \ k \1decreasing order: \7S\ \ \1n\ \ \9> \7S\ \ \ \1n\ \ \ \ \ .\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i=1\ \ ij\ \ \ \ i=1\ i,j+1 \+\1 \+ For example two naive matrices n=3 are excluded by this rule:\, \- \+ \+ 1 0 0 1 0 0\, \- \+ \+ 0 1 0 1 0 0\, \- \+ \+ 0 1 0 0 0 1\, \- \+ \+ \49.3 Stirling numbers of the first kind\, \-\1 \+ \+ These numbers count the \ naive matrices classified according \-\/ \+ \+ to the number k of elements on the main diagonal\, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ \ \ s\ \ = (n - 1)s\ \ \ \ \ +s\ \ \ \ \ \ \ (9.2)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ nk\ \ \ \ \ \ \ \ \ \ \ n-1,k\ \ \ n-1,k-1 \+\1 \+ There are (n \ - 1) places under the diagonal \ in the n-th row \-\/ \+ \+ which can \ be added to each \ naive matrix with k elements \ on the \- \+ \+ main diagonal without changing k. This multiplies the first term.\, \- \+ \+ If we \ add 1 , we \ increase the number \ of elements on \ the main \-\2\ \ \ \ \ \ \ \ \ \ \ \ nn\/ \+\1 \+ diagonal counted by the second term. See Table 8.2. \, \- \+ \+ It is not \ all, what can be told \ about the Stirling numbers \-\/ \+ \+\2 \1of \ the first \ kind. If \ \ we multiply \ them directly \ with powers \, \- \+ \+\2\ (j-1) \12 we get a table which row sums are equal to the half of the \- \+ \+ higher factorial (i+1)!/2 as in\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \7S \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 2 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \12 6 4 \8p \112\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \16 22 24 8 \8p \160\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p\124 100 140 80 16 \8p\1360\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (i-j) \1 When \ we multiply \ them with \ powers 2ööööö, then the row sums \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \1 give \ (2i \ +1)!/i!2ö or products of m odd \ numbers \ 1*3*5*. The \- \+ \+\2 \1factorial is depleted of even numbers.\, \- \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \7S\8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \12 1 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \-\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 3 \8p \18 6 1 \8p \115\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \148 44 12 1 \8p \1105 \, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+ If the columns are \ multiplied with +/- signs alternatively, \-\/ \+ \+ then in the first case the row \ sums are zero, except m=2, and in \- \+ \+\ \ \ \ ööööööööööööööööööööööööööööööööööööööööööööööööööööööööööö the second they give lower odd factorials. It is given without \-\/ \+ \+ööööööööööööööööööööööööööööööö a proof, which will be shown later.\, \- \+ \+ \49.4 Euler polynomials\, \-\1 \+ \+ The Euler numbers (Table \ 8.10) classify naive matrices accor-\A \-\/ \+ \+ ding to the \ number k of nonzero columns. We can \ add the new ele-\A \- \+ \+ ment in \ the last row into \ k already occupied columns or \ we can \-\/ \+ \+ put it into (n - k) unoccupied \ columns. It is clear that here the \-\/ \+ \+ index k can not be 0, as \ it was convenient at permutation matri-\A \-\/ \+ \+ ces.\, \- \+ \+ The Euler numbers are just a beginning of a serie of polyno-\A \-\2\/ \+\1 \+ mials E (r) where \ r = 1. The Euler \ polynomial E (2) is obtained \-\2\ \ \ \ n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \+\1 \+ if we \ multiply each previous \ column, except the \ first one, by \- \+ \+ powers of 2 as if elements of naive matrices in columns had signs \- \+ \+ +/- \ and all \ their combinations \ were acceptable. \ The resulting \, \- \+ \+ numbers are given in the \ Table 9.1, which elements are differen-\A \- \+ \+ ces of the matrix, obtained by \ multiplying the matrix of the Eu-\A \-\/ \+ \+ ler numbers with the matrix of m th powers of 2:\, \- \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 1 1 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \12 2 2\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \14 4\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \18\, \- \+\8---------------------k-------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11 \8p \11 1 1 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11 1 \8p \11 3 3 3\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11 4 1 \8p \11 9 13 13\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11 11 11 1 \8p \11 23 67 75\, \- \+ \+ \4Table 9.1 Euler polynomials E\ (2)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \+\1 \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1k \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k-----------------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 2 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 8 4 \8p \113\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 22 44 8 \8p \175\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 52 264 208 16 \8p \1541\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \11 114 1208 2416 912 32 \8p\14683 \, \- \+ \+ There are interesting the row \ sums. They are generated by the \-\/ \+ \+ formal equation \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m \1\ \ \ \ \ \ \ \ \ \ \ [1 + E(k)]\ = 2E(m) (9.3)\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ i\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \0(\11\0) (\11\0) \1where E(k)ö = E(i) and E(0) = 1. Then 2E(1)=öööE(0)ö+öööE(1), from \-\0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9\10\00 9\11\00 \+\1 \+ it \ E(1) = 1 and so on. These \ numbers will appear later many ti-\A \-\/ \+ \+ mes, as \ differences of complete \ plane simplices, but \ here they \- \+ \+\2 \1appeared as an extension of factorial simplices or as the product \- \+ \+\2 \1of the \ matrix of the Euler \ numbers with the diagonal \ matrix of \-\/ \+ \+\2\ \ \ \ \ \ \ \ j-1 \1powers 2 .\, \- \+ \+ \49.5 Mac Mahon numbers\, \-\1 \+ \+ This statistics (Table 8.11) counts naive matrices according \- \+ \+ their moments, which are obtained by multiplying naive matrices by \- \+ \+ the diagonal matrix with indices \ \7D\1(j - 1). The reccurence is obtai-\A \- \+ \+ ned from lesser \ matrices by repeating n times terms \ of the last \- \+ \+ but one row \ of the table of Mac Mahon \ numbers with equal or in-\A \-\/ \+ \+ creased moments. The moment remains the same, if the unit element \- \+ \+ in the last row is placed in \ the first column and it is increased \- \+ \+ till \ (n-1), \ if \ it \ is \ placed \ in \ the \ n th column. From each \- \+ \+ matrix with (n-1) rows n new matrices are produced. Their moments \- \+ \+ are counted as e.g. for n = 5:\, \- \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Moments : \8p \10 1 2 3 4 5 6 7 8 9 10\, \- \+\8------------------k--------------------------------------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \14 rows and columns\ 1 3 5 6 5 3 1\, \-\8------------------k--------------------------------------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \16.term \8p \11 1 1 1 1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \15.term \8p \13 3 3 3 3\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \14.term \8p \15 5 5 5 5\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \13.term \8p \16 6 6 6 6 \, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \12.term \8p \15 5 5 5 5\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \11.term \8p \13 3 3 3 3\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \10.term \8p \11 1 1 1 1\, \- \+\8------------------k------------------------------------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Mac Mahon numbers \8p \11 4 9 15 20 22 20 15 9 4 1 \, \- \+\8 \+\1 This \ scheme \ gives \ automatically \ the \ factorials.\, \- \+ \+ \49.6 Stirling numbers of the second kind\, \-\1 \+ \+ When we \ look on the sequence \ aac, we see that \ in its matrix \- \+ \+ the column b is missing. We excluded such strings as faulty Young \- \+ \+ tables or \ convolutions, but there were \ not allowed also strings \- \+ \+ as abb, where b appeared twice but a only once. There is a diffe-\A \- \+ \+ rence in these two cases: If not all columns are not occupied suc-\A \- \+ \+ cessively, we jump in the space. \ Therefore we will now count all \- \+ \+ naive matrices in the lower triangular form with successively oc-\A \-\/ \+ \+ cupied columns. Their reccurence is \, \- \+ \+ \ \ \ \ \ \ \ \ \ \ \ s\ \ = 1; s\ \ = js\ \ \ \ \ + s\ \ \ \ \ \ \ (9.4)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ 11\ \ \ \ \ \ \ \ \ ij\ \ \ \ \ i-1,j\ \ \ \ i-1,j-1 \+\1 \+ It is possible to place \ a new element into j already occupied \-\/ \+ \+ columns and \ only one possibility, how to increase \ the number of \- \+ \+ occupied \ columns. In \ such a way, we obtain \ a table of \ numbers \-\/ \+ \+ which are known as the Stirling numbers of the second kind.\, \- \+ \+ \4Table 9.2 Stirling numbers of the second kind\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1j \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k-------------------------------k----- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 3 1 \8p \15\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \11 7 6 1 \8p \115\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \11 15 25 10 1 \8p \152\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \11 31 90 65 15 1 \8p \1203\, \- \+ \+ Stirling numbers of the second \ kind are inverses of the Stir-\A \-\/ \+ \+ ling numbers of \ the first kind or Stirling \ numbers of the first \- \+ \+ kind are inverses of the Stirling numbers of the second kind, when \- \+ \+\2 \1one from both matrices ( Table \ 8.11 and Table 9.2) is multiplied \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i-j \1with alternating signs (-1) .\, \- \+ \+ Stirling found \ numbers bearing his name, when he compared po-\A \-\2\/ \+\1 \+ wers of any \ number t with its factorial moments \ (t) defined by \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+ products (t) \ = t(t - 1)...(t - \ k + 1). Stirling numbers of \ the \-\2\ \ \ \ \ \ \ \ \ \ \ \ k \+\1 \+ first kind transform sums and differences of powers into factori-\A \-\2 \+\1 \+\2 \1al moments as in: (4) \ = 24 = 2*4 - 3*16 + 1*64. Stirling numbers \- \+ \+\2 \1of the second \ kind invert sums of factorial \ moments into powers \- \+ \+\2\ \ \ \ \ \ \ \ \ 3 \1as in : 4 = 64 = 1 *4 + 3*12 \ + 1* 24. Here t can substitute ra-\A \-\/ \+ \+ tional numbers, too.\, \- \+ \+ The \ row sums \ of Stirling numbers of \ the second \ kind, which \-\/ \+ \+ count naive matrices in the \ lower triangular form with successi-\A \-\/ \+ \+ vely occupied columns, are obtained as a selfgenerating function \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-1 \ \ \ \ \ \ \ \ i \1\ \ \ \ \ \ \ \ \ \ \ S(n) = (S\ + 1)\ \ \ \ , where S\ = S\ (9.5)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i \+\1 \+ or using \ matrices. Then these \ numbers S(n) are \ obtained on the \- \+ \+ diagonal of the \ product. We can multiply the \ product further by \-\/ \+ \+ the diagonal index matrix to obtain moments\, \- \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 1 1 1 \8p \11\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 2 3 \8p \12\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 3 \8p \13\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 \8p \14\, \- \+\8--------------------k----------------k--------------- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \11 1 1 1 \8p \11 2 3 4\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 1 \8p \11 2 3 4 \8p \11 4 9 16\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 1 2 \8p \11 2 5 10 \8p \11 4 15 40\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 1 2 5 \8p \11 2 5 15 \8p \11 4 15 60\, \- \+ \+ Notice, \ that the \ matrix of \ Stirling sums \ begins with two \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \/ \+ \+\2 \11 and on the diagonal of the product is only one 1 and then imme-\A \- \+ \+\2 \1diately \ higher sums follow. In \ the final product the \ sums are \- \+ \+\2 \1multiplied with \ corresponding powers. If we \ label the matrix of \- \+\8 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1binomial \ coefficients as \ \4B \1, then \ we can \ consider its product \- \+\8 \+\1 with \ the \ diagonal \ matrix \ \7D\1(i) \ as \ the logarithmic difference \- \+\8 \+\1 d(log\4S\1), similarly as it was \ derived in Chapter 7.4. The inverse \- \+\8 \+\2 \1matrix of \ sums of Stirling numbers \ of the second kind \ has ele-\A \-\2\/ \+\8 \+\2\ \ \ \ \ \ \ \ \ -1\ -1 \1ments : s = 1; s \2= \1-[S /S ]; s = 0 otherwise.\, \-\2\ \ \ \ \ \ \ \ \ jj\ j-1,j\ \ \ \ \ \ j-1\ \ j\ \ \ \ ij \+\1 \+ We have shown one relation between Stirling numbers of the se-\A \-\/ \+ \+ cond kind with the binomial coefficients. But there appears still \- \+ \+ another relation. The difference of \ two successive sums is gene-\A \-\/ \+ \+ rated again by a binomial\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-2 \7\ \ \ \ \ \ \ \ \ \ \ \ \ D\1S\ = S\ - S\ \ \ = (S\ \ \ + 1)\ \ \ (9.6)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ n\ n\ \ \ n\ \ \ \ n-1\ \ \ \ k+1 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k \1where again we put Sö = Sö. E.g.: Sö - Sö = 1*1 +4*2 + 6*5 + 4*15 \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\ \ \ \ \ \ \ \ 6\ \ \ \ 5 \+\1 \+\2 \1+ 1*52 = 151.\, \-\2 \+\1 \+ The Stirling numbers of the second kind can be defined by the \- \+ \+ formal relation\, \- \+ \+\2\ 1\ \ \ n\ \ \ n-1\ \ \ \ \ \ \ \ \ \ n-1\ \ \ \ \ \ \ \ \ \ \ \ n-2\ \ \ \ \ \ \ \ \ \ \ \ \ 0 \7D\ \1(m)\ \2= \1m\ \ \ [(1 +1/m)\ \ \ + (1 + 1/m)\ \ \ ...+(1 - 1/m)\ ]\, \-\2n \+\1 \+ Inserting m = 1, we obtain numbers S(n,2): \, \- \+ \+\2\ 1\ n\ \ \ \ n-1\ \ n-1\ \ \ \ n-2\ \ \ \ \ \ 0 \7Dö\11ö = 1ööö[2ööö + 2ööö...+ 2ö]. The other numbers are derived by \-\2m \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ m\ n\ \ \ \ \ \ \ \ \ \ \ \ m\ n-1\ \ \ \ m-1\ n-1 \1the relation \7Dö\11ö = (m + \ 1)\7D\1ö1ööö + \7D\1ööö1ööö under the condition \- \+ \+\2\ 0\ 0 \7D\ \11\ = 1.\, \- \+ \+ The differences of the Stirling numbers of the second kind \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-1\ m \1S(m,n) - S(m-1,n) = \7D\ \ \ \12\ form the following Table (9.4).\, \- \+ \+ \4Table 9.4 Differences of Stirling numbers of the second kind\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \8p \11 2 3 4 5 6 \8p \7S\, \-\1 \+\8----k------------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \10 1 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \10 2 1 \8p \13\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \10 4 5 1 \8p \110\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \10 8 19 9 1 \8p \137\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p \10 16 65 55 14 1 \8p\1151\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ 2\ 6\ \ \ \ \ \ \ \ \ \ 3\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ 1\ \ \ \ \ \ \ 0 \1 E. g.: \7Dö\12ö = 8[(3/2)ö + (3/2)ö + \ (3/2)ö + (3/2)ö] = 65. \- \+ \+\2 \1 This number \ counts naive matrices in \ lower triangular form \-\/ \+ \+\2 \1with \ 3 occupied columns \ and 6 rows, \ obtained from \ 15 matrices \- \+ \+\2 \1counted by S(5,2) \ by adding the unit element \ into the 3. column \, \- \+ \+\2 \1and 2*25 matrices counted by \ S(5,3) increased by adding the unit \- \+ \+\2 \1element into two first columns.\, \- \+ \+ \49.7 Substirlings\, \-\1 \+ \+ In \ analogy with \ subfactorials defined \ in Chapter \ 8.6, we \-\/ \+ \+ introduce numbers, \ which we will \ call substirlings. They \ count \- \+ \+ naive matrices in lower triangular form with successively occupi-\A \- \+ \+ ed columns in \ another order, according to the \ number of columns \- \+ \+ containing just one nonzero element. \ We have shown that such or-\A \- \+ \+ bits are differences of plane simplices, therefore even now these \- \+ \+ matrices \ form differences. \ Their matrix \ is in \ the Table \ 9.5, \- \+ \+\2 \1which is \ completed by the \ row and column \ indexed from 0. \ E.g. \-\2\/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4 2\ 2 \1s = 4 counts \4N\1: a ,a b ,abba,abab.\, \-\2\ 40 \+\1 \+ \, \- \+ \+ \4Table 9.5 Substirlings\, \-\1 \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n\ \8p \10 1 2 3 4 5 \8p \7S\, \-\2\ 1 \+\8----k-----------------------------k--- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n=0 \8p \11 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \8p \10 1 \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 0 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \11 3 0 1 \8p \15\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \14 4 6 0 1 \8p \115\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p \111 20 10 10 0 1 \8p \152\, \- \+ \+ Again, \ there appeared \ binomial coefficients \ as generating \-\/ \+ \+ factors. Naive matrices without \ any columns, containing just one \- \+ \+ unit \ element, are \ combined with \ n columns \ with just one unit \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1 \+\1 \+ element and the result gives \ the matrix elements. Therefore sums \- \+ \+\2 \1of Stirling \ numbers of the second \ kind are obtained by the for-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \/ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \ k \1mal binomial : S = (s + 1) where s = s .\, \-\2 \ n\ \ \ \ \ n0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k0 \+\1 \+ Another possibility, how the \ Stirling numbers of the second \- \+ \+ kind \ are obtained, is the direct count of corresponding matrices \- \+ \+ arranged according to the powers of a. E.g.:\, \- \+ \+ a\, \- \+ \+ ab aa\, \- \+ \+ abb, abc; aab, aba; aaa\, \- \+ \+ We get the \ table, in which naive natrices \ are arranged ac-\A \-\/ \+ \+ cording to the rows containing the symbol a. Again they are obta-\A \- \+ \+ ined by multiplying lower matrices (without this symbol) by bino-\A \-\/ \+ \+ mial coefficients, showing possibilities:\, \- \+ \+\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \ 1 2 3 4 5 6 \ \7S\, \-\8----k------------------------k---- \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=1 \8p \11\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \8p \11\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2 \8p \11 1 \8p \12\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3 \8p \12 2 1 \8p \15\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4 \8p \15 6 3 1 \8p \115\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5 \8p\115 20 12 4 1 \8p \152\, \-\8\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6 \8p\152 75 50 20 5 1 \8p \1203\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+ Substirlings are in their turn \ again just sums of the asso-\A \-\/ \+ \+ ciated \ Stirling numbers \ of the \ second kind, \ which count naive \- \+ \+ matrices in the lower triangular \ form without empty columns, ha-\A \- \+ \+ ving column sums at least m = 2. Their reccurence is given by the \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k\/ \+\1 \+ formula \, \-\2 \+\1 \+ \ \ \ \ \ \ \ \ \ \ \ \ \ a\ \ = ja + (i-1)a\ \ \ \ \ \ \ \ \ \ \ \ \ (9.7)\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ ij\ \ \ \ \ i-1,j i-2,j-1 \+\1 \+ and they are given in Table 9.6\, \- \+ \+ \4Table 9.6 Associated Stirling numbers of the second kind\, \-\1 \+ \+\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1n \8p \10 1 2 3 \8p \7S\, \-\1 \+\8---k------------------k----- \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1m=0\8p \11 \8p \11\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1\8p \10 0 \8p \10\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 2\8p \11 \8p \11\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 3\8p \11 \8p \11\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 4\8p \11 3 \8p \14\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 5\8p \11 10 \8p \111\, \-\8\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 6\8p \11 25 15\ \ \ \ \8p\ \141\, \- \+ \+ \49.8 Space of 4 statistics\, \-\1 \+ \+ We have \ mapped naive matrices in \ the lower triangular form \-\/ \+ \+ on \ points \ of \ rectangular \ n-dimensional \ parallepipeds. \ These \- \+ \+ points are \ classified by 3 different \ statistics Euler, Stirling \- \+ \+ and Mac Mahon, \ in 3 directions. They split the \ space behind the \- \+ \+ Euclidean one. These statistics distribute points differently, as \- \+ \+ it is shown on the \ following Fig.9.1 for 2 dimensional space and \-\/ \+ \+ on the scheme for 3 dimensional space.\, \- \+ \+ \4Table 9.7 Scheme of 3 statistics\, \-\1 \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \1Stirling \8p \1Mac Mahon\, \-\8\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \16 \ \ \ \ \ \ \ \ \ \ \ \ \8p\, \-\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \18 \ \ \ \ \ \ \ \8p\, \-\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \13 6 \ \ \ \ \ \8p\, \-\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \11 \8p \11 3 5 6 5 3 1\, \- \+\8----------k----------------k---------------------------- \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1Euler 1 \8p \11 \8p \11\, \-\8\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 11 \8p \14 7 \8p \11 2 5 3\, \-\8\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 11 \8p \11 4 6 \8p \13 4 4 \, \-\8\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \1 1 \ 1 \ 1\, \-\8----------k----------------k----------------------------- \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\ \ \ \ \ \ \ \ \ \ p\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p p \16 11 6 1\ \ \8p\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p \+\1 \+ We have compared 3 statistics, but the fourth appeared here, \-\/ \+ \+ too, on the diagonal of \ the Stirling and Euler statistics. Euler \- \+ \+ numbers divide naive matrices in the lower triangular form accor-\A \- \+ \+ ding to the \ number of occupied columns. Stirling \ numbers of the \- \+ \+ second kind count matrices \ which rows are occupied consecutively \- \+ \+ and these matrices appear on the crossections of both statistics.ööööööööööö\, \- \+ \+ I do not know, what you think about these coincidencies. But \-\/ \+ \+ you must admit, that the Euclidean \ space is full of surprises as \- \+ \+ a Fairy land. It \ seems to be alive and if \ we try to analyse it, \- \+ \+ there appear \ new layers just on \ elementary levels. Euclides was \- \+ \+ wrong, when he \ thought that there was no other \ way to his space \- \+ \+ then his axioms. He did not \ know what was behind. Different com-\A \- \+ \+ binatorial \ functions lead \ through \ this \ maze as \ the Adriane's \-\/ \+ \+ thread.\, \- \+ \=