\1cw Verze 2.10 \pTM 2 \pBM 14 \pPL 120 \pLM 1 \pRM 65 \HD \+ \+ \, \- \= \HE \+ \+ \, \- \= \FD \+ \+ \, \- \= \FE \+ \+ \, \- \= \+ \+ \"1 7 I N V E R S E M A T R I C E S\, \-\1 \+ \+ \417.1 Introduction \-\1 \+ \+ It is rather easy to define \ an inverse element to an isola-\A \-\/ \+ \+ ted element, \ as a number or \ a vector is. But \ this task becomes \- \+ \+ conceptually \ difficult at \ whole systems \ represented by \ matrix \- \+ \+ vectors. And it is mysterious, \ how to define inverse elements to \- \+ \+ things. Can you \ tell, what your inverse is? \ The answer will de-\A \- \+ \+ pend, if you \ search your inner inverse as \ a person, only, or an \-\/ \+ \+ inverse element of you as a part of some system.\, \- \+ \+ At first recall Chapter 4.4. There are two types of inverse e-\A \-\/ \+ \+ lements, additive and multiplicative. Additive inverse is defined \- \+ \+ by the identity \ a + b = 0, from it \ b = -a. The negative element \- \+ \+ has the same \ value and opposite sign of \ its parent element. The \- \+ \+ multiplicative inverse element is defined \ as the product ab = 1. \- \+ \+ From it \ b = 1/a. We \ have already shown \ that the multiplicative \-\/ \+ \+ inverses are additive on the logarithmic scale.\, \- \+ \+ At matrices, \ we can define \ also additive and \ multiplicative \- \+ \+ inverse matrices with zero matrices \ \40 \1and unit diagonal matrices \- \+ \+ \4I \1as unit elements. The additive \ inverses are trivial, they have \- \+ \+ only inverse signs, but the multiplicative inverses are much more \- \+ \+ interesting. \, \- \+ \+ We can start with unit permutation matrices \4P\1, which represent \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1the symmetric group. Their inverses are their transposes \4P P \1= \4I\1.\, \- \+ \+ At diagonal \ matrices \7D \1the \ inverse elements of \ dö are elements \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ 1/dö. \ But if \ we combine \ a diagonal \ matrix with \ a permutation \-\2\ \ \ j \+\1 \+ matrix, its inverse is not a simple sum of partial inverses.\, \- \+ \+ The problem of inverses \ is moreover complicated at assymmetric \- \+ \+ matrices, \ that they \ have two \ different inverses, \ one from the \- \+ \+ left \ and one \ from the \ right, because \ multiplications from the \- \+ \+ left have another effect than \ the multiplication from the right. \- \+ \+ And last \ but not least, \ many matrices have \ no inverse, because \- \+ \+ they \ are singular, \ it means \ that their \ spectrum contains some \- \+ \+ zero eigenvalues. \, \- \+ \+ We have worked with quadratic \ forms and it will be convenient \-\/ \+ \+ to define a third kind of \ inverses, the inner inverse of quadra-\A \- \+ \+\2 \1tic \ forms as \ a matrix \4R \1which \ gives, if \ it is multiplied from \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1both sides \ with a matrix \4M \1and \ its transposed form \ \4M \1the unit \-\/ \+ \+\2 \1diagonal matrix:\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ MRM \1= \4I \1(17.1)\, \-\/ \+ \+\2 \1 It can be \ expressed also conventionally, \4MR \1is \ the left hand \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ T \1side inverse of \4M \1and \4RM \1is \ the right hand side inverse of \4M\1. \- \+ \+\2 \1We can point \ in this context on the \ definition of eigenvectors, \- \+ \+\2 \1which give, when \ they have its matrix within, \ the diagonal mat-\A \- \+ \+\2 \1rix. If we correct the product by inverse eigenvalues, we get the \- \+ \+\2 \1unit diagonal matrix, therefore, \ a matrix \4M \1weighted by inverses \- \+ \+\2 \1of its eigenvalues \ is the inner inverse of \ its eigenvector mat-\A \-\/ \+ \+\2 \1rix.\, \- \+ \+ \417.2 Matrix inversing\, \-\1 \+ \+ We have shown in Chapters \ dealing with matrices of combinato-\A \-\/ \+ \+ rial numbers in triangular form, that their inverses are found by \- \+ \+ the inclusion and exclusion technique. Another technique suitab-\A \- \+ \+ le for finding of inverse matrices was already shown in the Chap-\A \- \+ \+ ter 16.12. Both techniques are equivalent in the the case of mat-\A \- \+ \+ rices in lower triangular form having the unit diagonal. The n-th \- \+ \+ power of its \ difference with the unit diagonal \ matrix gives the \- \+ \+ zero matrix \40\1. When we write all terms of this power and rearran-\A \-\/ \+ \+ ge them suitably, we get \, \- \+ \+\2\ \ \ \ \ \ n-1\ \ \ \ \ n-2\ \ \ \ \ \ \ \ \ \ \ \ n-3\ \ \ \ \ \ \ \ \ \ 1 \4I \1= [\4M \1- n\4M \1+ n(n-1)/2\4M \1-..+/- n\4M \1+/-\4I\1]\4M \1(17.2)\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \1The right side matrix in brackets is the left hand side inverse \4M \-\1 \+ \+ of the matrix in the lower \ triangular form \4M\1. This matrix can be \- \+ \+ written also on the left hand side of the brackets.\, \- \+ \+ Similar structure, only somewhat \ more complicated have matri-\A \-\2\/ \+\1 \+ ces \4B \1obtained \ from the Le \ Verrier-Faddeev-Frame technique, \-\2\ \ \ \ \ n-1 \+\1 \+ where coefficients of the polynomial are used for subtracting the \- \+ \+ unit \ diagonal matrix \ on different \ steps of \ the multiplication \-\/ \+ \+ with the matrix \4M\1.\, \- \+ \+ The \ inverse matrix \ can be \ formulated using \ the determinant \- \+ \+ d(\4M\1) and determinants \ of all its submatrices \7döö\4M\1, \ known as the \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+ minors \4Aöö\1. \ \7d\4ööM \1is the \ matrix \4M \1with \ the ith row \ and the jth \-\2\ \ \ \ \ \ \ \ ij\ \ \ \ ij \+\1 \+ column deleted.\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \1 The inverse matrix \4M\1öö to a \ matrix \4M \1is the transposed matrix \- \+ \+ of its minors Aöö divided \ by the determinant. If the determinant \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+ is \ zero, the \ inverse matrix \ \ is not \ defined from \ the obvious \- \+ \+ reason: \ If we \ divide by \ zero, we \ obtain undetermined \ infinite \- \+ \+ numbers. This gives also an \ answer, what your inverse element is. \- \+ \+ It is your minor.\, \- \+ \+ A multiplication \ of a matrix with \ its inverse is transformed \- \+ \+ into the \ task of decomposition \ of its determinant \ according to \- \+ \+ its \ rows or \ columns. If \ a \ row \ of minors \ is multiplied \ by a \- \+ \+ transposed row \ of the corresponding \ matrix elements, we \ obtain \- \+ \+ the \ determinant and \ because minors \ in the \ inverse matrix \ are \- \+ \+ divided by \ it, the ratio \ 1. If unmatching \ rows are multiplied, \- \+ \+ it has the \ same effect as if the matrix \ had two identical rows \- \+ \+ and the determinant given by this product is zero.\, \- \+ \+ The inverse matrices, \ if they exist, can be \ used for solving \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \1systems of linear equations \4Mx \1= \4b\1. We have simply \4x \1= \4M\ \ b\1.\, \- \+ \+ \417.3 Walk and path matrices\, \-\1 \+ \+ We have shown \ how the inverse matrix elements \ are related to \- \+ \+ minors of the \ matrix elements. But in some \ cases these inverses \- \+ \+ can be deduced \ directly from the structure of \ graphs without no \- \+ \+ apparent connection with minors and determinants. \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1 It is \ the case of matrices \ \4SSö \1of oriented trees. \ They have \- \+ \+ (n-1) rows and columns and are nonsingular, because corresponding \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1quadratic forms \4S\1ö\4S \ \1have just one zero eigenvalue. \ In a tree no \- \+ \+ cycles are and therefore, there exist just one walk between each \- \+ \+ pair of \ vertices ( in case \ of unoriented graphs we \ speek about \- \+ \+ paths). \ We can \ define matrices \ which rows \ correspond to \ all \- \+ \+ walks \ or paths \ in a \ tree, and \ columns represent \ the arcs \ or \- \+ \+ edges, respectively. The elements wöö \ of these matrices are 1 if \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+ the \ arc \ or \ edge \ j \ is \ a \ part \ of \ the \ path or walk i and 0 \- \+ \+ otherwise. The \ problem is complicated, \ especially at unoriented \- \+ \+ trees by signs necessary to eliminate unwanted elements when walk \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1matrices are multiplied with matrices \ \4GG\1ö which all elements are \- \+ \+ positive. wöö \ has positive sign, \ if the edge \ j is in \ the even \-\2\ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+ distance from \ the last edge \ in the block \ or the arc \ j has the \- \+ \+ same orientation as the last arc and it has negative sign, if the \- \+ \+ corresponding edge is in the odd \ distance from the last edge, or \- \+ \+ the corresponding \ arc has the \ opposite orientation as \ the last \- \+ \+ one.\, \- \+ \+ It is \ interesting that the \ walk matrices of \ oriented linear \- \+ \+ chains are identical with Petrie matrices of complete graphs, on-\A \-\/ \+ \+ ly their elements have different interpretations.\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ T \1 The true inverses of quadratic forms \ \4GG \1and \4SS \1are 1/n mul-\A \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ \ \ \ \ T\ T \1tiples corresponding quadratic forms \ \4W W\1, and matrices \4G W W \1and \- \+ \+\2\ T\ T \4S W W \ \1are right \ inverses of \ \4G \1or \4S\1, \ repectively, similarly as \-\/ \+ \+\2\ T\ \ \ \ \ \ \ \ T \4W WG \1and \4W WS \1are left inverses \ of \4G \1or \4S\1. The diagonal elements \- \+ \+\2 \1of both quadratic \ forms are numbers counting how \ many times the \- \+ \+\2 \1corresponding arc \ or edge was \ used in all \ walks or paths, \ off \- \+ \+\2 \1diagonal elements count common exploitations of the given pair of \- \+ \+\2 \1lines. These numbers obtained as simply are simultaneously minors \-\/ \+ \+\2 \1of the corresponding quadratic forms of incidence matrices.\, \- \+ \+\2 \417.4.Inverse matrices of uneven unoriented cycles.\, \-\1 \+ \+ \4 The incidence matrix G \1of \ a simple unoriented cycle C has in \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n\/ \+\1 \+ its canonical form in each \ row two consecutive 1, g = 1, g = \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ii\ \ \ \ \ \ ii+1 \+\1 \+ 1 { index (n + 1) = 1}, g = 0 otherwise. Both quadratic forms \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ \ \ \ T \1are identical, their elements \ are g g = 2, g g = 1 {index \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ii\ \ \ \ \ \ \ \ \ ii+/-1\/ \+\1 \+\2 \10 = 1, (n+1) = 1}.\, \-\2 \+\1 \+ The search for the inverse we \ begin at the quadratic form of \- \+ \+ a cycle matrix \ \4C\1. It is easy \ to find it for \ small cycles, e.g. \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ -1 \1for 7 member cycle this symmetrical matrix (\4S\ S\1)\ \ begins\, \- \+ \+ -5 7 -5 3 -1 -1 3\, \- \+ \+ 3 -5 7 -5 3 -1 -1\, \- \+ \+ .........................\, \- \+ \+ This \ matrix is \ obtained from \ a basic \ matrix of \ uneven cycles \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ d(ij) \1which elements cöö = (-1)ööööö. The upper indices are distances of \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ij \+\1 \+\2 \1vertices from the diagonal vertex. There are k positive and (k+ 1) \-\2 \+\1 \+\2 \1negative signs in each row an column, e.g.\, \-\2 \+\1 \+ +1 -1 +1 -1 -1 +1 -1\, \- \+ \+ -1 +1 -1 +1 -1 -1 +1\, \- \+ \+ +1 -1 +1 -1 +1 -1 -1\, \- \+ \+ ..........................\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ T\ \ \ \ 2 \1 Since \4C \1is \ symmetric \4C C \ \1= \4CC \1= \4C \1. In \ quadratic forms \ the \- \+ \+\2 \1sign s of neighbour elements are always opposite and their values \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ T \1difference is \ always 2. Therefore when \ multiplying \4CCö \1with \4GöG \-\1 \+ \+\2 \1we obtain for diagonal elements \, \- \+ \+ 1*(2 - n) + 2*n + 1*(2 - n) = 4\, \- \+ \+ for the off-diagonal elements we obtain \, \- \+ \+ 1*[2(k - 1) - n] + 2*(n - 2k) + 1*[2(k + 1) - n] = 0 \, \- \+ \+ This result is obtained also for the middle elements +/-(1,1,- \-\/ \+ \+ 3) or +/-(-3,1,1). The cycle matrix \4C \1has the required property of \- \+ \+ cycle matrices, namely \4CG \1= \40 \1mod 2. The \ neighbour elements are \- \+ \+ mostly (+/ - 1) \ and if they have the equal \ sign, then their sum \- \+ \+\2 \1is 2. The product is 2\4P\1, where \4P \1is the unit permutation matrix of \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ \ T \1a cycle. The next product \4CGG \1= 2(\4P \1+ \4P \1).\, \- \+ \+\2 \1 These properties of partial products allow to define pseudoin-\A \-\/ \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1verse matrices of \4G \1and \4G \1from both sides\, \- \+ \+\2\ -1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T\ 2\ \ \ \ \ \ \ \ \ \ \ T \4G\ \ \1from the right = 1/4\4G\ C\ \1= +/-1/2\4CP\, \-\1 \+ \+\2\ -1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ T\ \ \ \ \ \ \ \ \ \ T \4G\ \1from the left = 1/4\4C\ G\ \1= =/-1/2\4P\ C\, \-\1 \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1The permutation \ matrix \4Pö \1has \ unit elements p\4ööööööööööö\1. If it \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i,i+(n-1)/2 \+\1 \+ multiplies the matrix \4C \1from \ the right, it permutes its columns, \- \+ \+ if from the \ left, it permutes its rows. Because \ the matrix \4C \1is \- \+ \+ symmetric \ results of \ both \ permutations \ are identical \ and the \- \+ \+ incidence \ matrix of \ an unoriented \ uneven \ cycle has \ the true \- \+ \+ inverse. Moreover if the cycle matrices act on the quadratic form \- \+ \+\2\ T\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \4G\ G \1from both sides, they diagonalize it, too : \4CG\ GC \1= 4\4I\1.\, \- \+ \+ \417.5. Inverse matrices of unoriented cyclic graphs\, \-\1 \+ \+ The \ existence \ of \ inverse \ matrices \ of \ quadratic forms of \- \+ \+ incidence \ matrices of \ simple unoriented \ cycles arouse interest \- \+ \+ about possibilities \ to find inverse matrices \ of these quadratic \- \+ \+ forms of incidence matrices of cyclic graphs. From both quadratic \- \+ \+\2\ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ T \1forms \4G\1ö\4G \ \1and \4GG\1ö only the \ matrix of lesser dimension \ can have \- \+ \+ the inverse. It means that at graphs with two or more cycles only \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ T\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1the \ form \ \4G\1ö\4G \ \1can \ be \ nonsingular, \ because \ \4GG\1ö \ is of higher \- \+ \+ dimension.\, \- \+ \+ Some examples \ of unoriented cyclic graphs \ having inverses of \- \+ \+ the quadratic form were found easily (Fig. 17.1). Graph A has in-\A \-\/ \+ \+ verses of both quadratic forms\, \- \+ \+\2 \ T\8pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \2T\ \ -1\ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4G\ G \8pp\12 1 1 0\8pp \14(\4G\ G\1)\ \ \8pp \13 -1 -1 1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 2 1 0\8pp pp\1-1 3 -1 1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 1 3 1\8pp pp\1-1 -1 3 -3\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 0 1 1\8pp pp \11 1 -3 7\8pp\, \-\1 \+ \+\2\ \ T\ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \2T\ -1\ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4GG\ \8pp\12 1 1 0\8pp \12(\4GG\ \1)\ \ \8pp \12 -1 -1 1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 2 1 1\8pp pp\1-1 2 0 -1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 1 2 1\8pp pp\1-1 0 2 -1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 1 1 2\8pp pp \11 -1 -1 1\8pp\, \-\1 \+ \+ Graph B\, \- \+ \+\2\ T\ \ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \2T\ \ -1\ \ \ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4G\ G \8pp\12 1 1 0 0\8pp \124(\4G\ G\1)\ \ \8pp\117 -7 -3 1 1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 2 1 0 0\8pp pp\1-7 17 -3 1 1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 2 4 1 1\8pp pp\1-3 -3 9 -3 -3\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 0 1 2 1\8pp pp \11 1 -3 17 -7\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\10 0 1 1 2\8pp pp \11 1 -3 -7 17\8pp\, \-\1 \+ \+\2 \1 Graph C\, \- \+ \+\2\ T\ \ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \2T\ \ -1\ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \4G G \8pp\13 1 1 1\8pp \14(\4G\ G\1)\ \ \8pp \12 -1 -1 0\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 2 0 1\8pp pp\1-1 3 1 -1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 0 2 1\8pp pp\1-1 1 3 -1\8pp\, \-\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\11 1 1 3\8pp pp \10 -1 -1 2\8pp\, \-\1 \+ \+ \417.6 Relations of spectra of graphs and complementary graphs\, \-\1 \+ \+ The characteristic polynomials of Laplace-Kirchhoff matrices \-\/ \+ \+ can be found by the same techniques as the characteristic polyno-\A \-\/ \+ \+ mials of adjacency \ matrices, by \ counting characteristic figures \-\/ \+ \+ in which the vertex degrees v represent \ loops or by Le Verrier- \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j\/ \+\1 \+ Faddeev-Frame technique.\, \- \+ \+\2\ \ \ \ \ \1 The sum of inverses \ of Laplace-Kirchhoff submatrices ( \7d \4K\1) \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j\/ \+\1 \+\2 \1forms the generalized inverse \4E \1of the Laplace-Kirchhoff matrix \4E \-\2 \+\1 \+\2\ \ \ \ \ \ \ \ \ -1 \1= \7S \1(\7d \4K\1) giving with it \ as the product the Laplace-Kirchhoff \-\2\ \ \ j\ j \+\1 \+ matrix of the complete graph \4K \1: \4KE \1= \4K \1. The generalized inverse \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ K\ \ \ \ \ \ \ K \+ \+\2 \4E \1of the \ Laplace-Kirchhoff matrix is \ identical with the \ matrix \-\2 \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-1 \4B \1of \ the Le \ Verrier-Faddeev-Frame technique \ \4K \1= \4K \1-a \4K \-\2\ \ n-2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ 1 \+\1 \+ + ...a \4K\1, where a are coefficients of the characteristic poly-\A \-\2\ \ \ \ \ \ \ n-1\ \ \ \ \ \ \ \ \ \ k \+\1 \+ nomial and \ matrices \4K \1= \4KB \1the Frame \ matrices \4B \1being obta-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \ \ \ n-1 \+\1 \+\2 \1ined as \4B \1=\4K \1- a \4I\1. \4I \1is the unit diagonal matrix. The last Frame \-\2\ \ \ \ \ \ \ \ \ n\ \ \ n\ \ \ \ n \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -1 \1matrix is \4B \1= \4K \1- a\4I \1= \40\1. It \ means that \4B \1= 1/a \4K \1. At Lap-\A \-\2\ \ \ \ \ \ \ \ \ \ \ n\ \ \ n\ \ \ \ n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-1\ \ \ \ \ n-1\/ \+\1 \+\2 \1lace-Kirchhoff matrices a = 0, therefore \4K \1= \40\1, \4J \1is the unit \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \+\1 \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \1vector-column. Thus \4B \1= \4K \1, a\ \ \ = n. It follows that \4E \1= \4B\ \ \ \1and \, \-\2 \ \ \ \ \ \ \ \ n-1\ \ \ \ \ \ n-1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-2 \+\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \+\2\ \ 2 \4EK\ \1= n\4K\1.\, \-\2 \+\1 \+ Moreover, if \ the Laplace-Kirchhoff matrix \4K \1of the graph G is\, \- \+ \+ multiplied by (\4E \1- \4I\1), the Laplace-Kirchhoff matrix of the comple-\, \- \+ \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - mentary graph \ G is obtained. From \ these results follow relations \, \- \+ \+ of eigenvalues \7l \1of corresponding the Laplace-Kirchhoff matrices\4:\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - \4E \1(\7l\ \1) = \4K\1(n/\7l\ \1) and \4K\1(G)(\7l\ \1) = \4K\1(G)(n - \7l\ \1).\, \-\2\ \ \ \ j\ \ \ \ \ \ \ \ \ j\ \ \ \ \ \ \ \ \ \ \ \ j\ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ The eigenvalues \ of the Laplace-Kirchhoff \ matrices of comple-\A\, \- \+ \+ mentary graphs \ must be complementary \ to give as \ their sums the \, \- \+ \+ eigenvalues of the complete graph. For example, the star S is the \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n \+\1 \+ complementary graph of the complete graph K and its spectrum is \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-1 \+\1 \+\2\ \ \ n-2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n-2 \1[n,1 ,0] which is complementary to [0,(n - 1) ,0] of the Lap-\A \-\/ \+ \+ lace-Kirchhoff matrix of the complete graph with (n -1) vertices.\, \- \+ \+ \417.7.Products of the Laplace-Kirchhoff matrices\, \-\1 \+ \+ Two graphs are considered equivalent, if their matrices can be \-\/ \+ \+ transformed by symmetrical permutations with the unit permutation \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \1matrices \4P \1into each other : \4M\1(G ) = \4PM\1(G )\4P\1. An interesting pro-\A \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i\ \ \ \ \ \ \ \ j\/ \+\1 \+ blem arises, how are \ related eigenvalues of corresponding matri-\A \- \+ \+ ces at such operations. It is customary to arrange eigenvalues in \- \+ \+ increasing or decreasing order, but if a matrix is permuted, then \- \+ \+ also its \ eigenvalues should be \ permuted to give \ different pro-\A \- \+ \+ ducts and therefore they can not \ be in all equivalent graphs ar-\A \- \+ \+ ranged similarly as in canonical form in an increasing or decrea-\A \-\/ \+ \+ sing order.\, \- \+ \+ When we multiply the Laplace-Kirchhoff matrices of twelve dif-\A \-\2\/ \+\1 \+ ferently labeled linear chains L , we obtain 3 different results \-\2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4\/ \+\1 \+ depending on the number of common arcs and the given permutation. \-\/ \+ \+ From them we are interested on two extreme cases:\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \13 common arcs \4K\ \1(L\ ) \8pp \12 -3 1 0\8pp\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4\ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\1-3 6 -4 1\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\ \11 -4 6 -3\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \10 1 -3 2\8pp\, \-\1 \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ _ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \10 common arc \4K\1(L\ )\4K\1(L\ )\ \ \8pp\ \12 -1 -1 0\ \8pp\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4\ \ \ \ 4\ \ \ \8pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\1-1 2 0 -1\ \8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp\1-1 0 2 -1\ \8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp pp \10 -1 -1 2 \8pp\, \-\1 \+ \+ Lö \ is \ \ selfcomplementary \ and \ in \ the \ \ product \ of \ the \ two \, \-\2\ \ 4 \+\1 \+ selfcomplementary graphs \ the eigenvalues are \ just multiplied in \, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2 \1inversed order as eigenvalues in the quadratic \4K\ \1:\, \- \+ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1/2\ \ \ \ \ \ \ \ \ \ 1/2 \1Spectrum (L\ ) 2+2\ \ \ 2 2-2\ \ \ 0\, \-\2\ \ \ \ \ \ \ \ \ \ \ 4 \+\1\ \ \ \ \ \ \ \ \ \ _ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1/2\ \ \ \ \ \ \ \ \ \ 1/2 \1Spectrum (L\ ) 2-2\ \ \ 2 2+2\ \ \ 0\, \-\2\ \ \ \ \ \ \ \ \ \ \ 4 \+\1 \+ \8---------------------------------------\, \-\1 \+ \+ Spectrum (C\ ) 2 4 2 0\, \-\2\ \ \ \ \ \ \ \ \ \ \ 4 \+\1 \+ The matrix product is the Laplace-Kirchhoff \ matrix of the cycle \, \- \+ \+ Cö and its eigenvalues are not ordered \ because the cycle \ itself \, \-\2\ 4 \+\1 \+ is permuted \ from its standard form.\, \- \+ \+ The result can be formulated \ in the theorem: If the Laplace-\, \- \+ \+ Kirchhoff matrix of a graph with simple arcs is multiplied by the \, \- \+ \+ Laplace-Kirchhoff matrix of its complementary graph, the eigenva-\A\, \- \+ \+ lues of the matrix product are eigenvalues of the parent Laplace-\, \- \+ \+ Kirchhoff matrix multiplied with themselves in the inverse order, \, \- \+ \+ except the zero eigenvalue.\, \- \+ \+ The \ proof: \ From \ the \ complementary \ properties of both Lap-\, \- \+ \+ lace-Kirchhoff matrices follows \ that their off-diagonal elements \, \- \+ \+ forming adjacency matrices \ \4A \1have no effect on \ the trace of the \, \- \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ _ \+ product,Tr{\4A\1(G)\4A\1(G)} = 0. Therefore \ the diagonal elements of the \, \- \+ \+ product \ are vö{(n \ - 1) \ - vö} \ and simultaneously \ the trace is \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ j\ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ according to the theorem the sum of eigenvalues products \7lö\1(n-\7l \1). \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j\ \ \ \ j \+\1\ \ \ \ _ \+\2\ \ \ \ \ \ \ \ \ \ \ \ n\ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ n\ \ \ \ \ \ \ \ \ 2 \1Tr(\4KK\1) = \7S\ \ \1{(n - v\ )- v\ } = \7S\ \ \1(n\7l\ \1-\7l \1).\, \-\2\ \ \ \ \ \ \ \ \ \ \ j=1\ \ j\ \ \ \ j\ \ \ \ \ j=1\ \ \ \ j\ \ \ j \+\1 \+ The trace \ of the Laplace-Kirchhoff matrix \ is equal simulta-\A\, \- \+ \+ neously to the sum of vertex degrees \7S\1v and to the sum of eigen-\A\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ values \7Slö \1and the trace \ of the squared Laplace-Kirchhoff matrix \, \-\2\ \ \ \ \ \ \ \ \ j \+\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ 2\ \ \ \ \ \ \ \ \ \ \ \ 2 \1with simple arcs is \ Tr(\4Kö\1) = \ \7S\1(vö+övö) = \ \7Sölö\1, thus \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j\ \ j\ \ \ \ \ \ \ \ j \+\1\ \ _ \+\2 \ \ 2 \1Tr(\4KK\1)ö= nTr(\4K\1)ö-Tr( \4Kö\1). Going from the \ \ complementary graph and \, \- \+ \+ its Laplace-Kirchhoff matrix, and inserting (n -1 - v ) we obtain \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ j \+\1 \+ the same result.\, \- \+ \+ The proof used properties of \ graph matrices with simple arcs, \, \- \+ \+ but the relation between eigenvalues \ is true also for multigraphs \, \- \+ \+ and their complementary graphs as calculated from the relation \, \- \+_\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \4_ \+\1 \4K \ \1= \4K\1(\4E \1- \4I\1), it \ is the difference \4K \1= \ \4K\1ö \2- \4K\1. For example\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ K \+\1 \+ \, \- \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp pp\1-1 1 0\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp \+\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ _\8pp\ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp \4 K\8pp \11 0 -1\8pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pp \ pp \10 -1 1\8pp\, \-\1 \+ \+\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ----------------- \1\, \-\8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp \+ pp \13 -2 -1\8pppp\1-5 4 1\8pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp \+\4 K \8pp\1-2 2 0\8pppp\ \14 -2 -2\8pp \+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp\, \-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ pp\ \ \ \ \ \ \ \ \ \ pppp\ \ \ \ \ \ \ \ \ \ pp \+ pp\1-1 0 1\8pppp\ \11 -2 1\8pp \+\1 \, \- \+ \+ \, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1/2 \ \ \ \ \ 1/2 \+\1Spectrum \4K \1: 3+3\ \ \ , 3- 3\ \ ,\ 0 \+ \ \ \ \ \ \ \ \ \ _\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1/2\ \ \ \ \ 1/2 \+\1Spectrum \4K \1: -3\ \ \ , 3\ \ \ , 0 \+\8-------------------------------------- \1\ \ \ \ \ \ \ \ \ \ _\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1/2\ \ \ \ \ \ 1/2 \+\1Spectrum \4KK\1: -(3+27\ \ \ ), 27\ \ \ -3, 0 \+ \, \- \+\ \ \ The proof can be made simple: \+ \ \ \ \ \ \ _\ \ \ \ \ \ \ \ \ _\, \-\2\ 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \+\4K\ \1+ \4KK \1= \4K\1(\4K \1+ \4K\1) = \4KK\ \1= \4K\1(n\4I \1-\4JJ\ \1) = n\4IK \1+ \40 \1= n\4K\1. \+\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ K \1\, \-\2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ T \+\1 The unit vector-column \ \4J \1or the unit vector \ row \4J\1ö are zero \+ \, \- \+eigenvectors of the Laplace-Kirchhoff \ matrices of all graphs and \+ \, \- \+the Laplace-Kirchhoff \ matrices of all subgraphs \ of the complete \+ \, \- \+graph Kö are not orthonormal eigenvectors to its Laplace-Kirchhoff \+\2\ \ \ \ \ \ \ n \1\, \- \+matrix. \+ \, \- \+ The consequence \ of the properties of \ eigenvalues products is \+ \, \- \+that the \ spectra of selfcomlementary \ Laplace-Kirchhoff matrices \+ \, \- \+must \ be \ \ symmetrical, \ except \ their \ zero \ \ eigenvalue: \+ \, \- \+n/2 +/-(\7l \1-n/2). \+\2\ \ \ \ \ \ \ \ \ j \1\, \- \+\4 \+\1 \, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \4\, \-\1 \+ \+\2 \1\, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+ \8\, \-\1 \+ \+\2 \1\, \- \+ \+ \, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+\6 \+\1 \, \- \+\6 \+\1 \, \- \+ \+ \, \- \+ \+ \, \-\2 \+\1 \+ \, \- \+ \+ \, \-\2 \+\1 \+ \, \- \+ \+ \, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+ \, \- \+ \+\2 \1\, \- \+ \+\2 \1\, \- \+ \+\8 \1 \- \+ \+\2 \1\, \-\2 \+\1 \+ \, \-\2 \+\1 \+ \, \-\2 \+\1 \+ \, \-\8 \+\1 \+ \, \- \+ \+ \, \- \+ \+ \, \- \+ \+ \, \- \=